Suppr超能文献

细胞外基质成分调节β-微球蛋白淀粉样形成的不同阶段。

Extracellular matrix components modulate different stages in β-microglobulin amyloid formation.

机构信息

From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and.

the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854.

出版信息

J Biol Chem. 2019 Jun 14;294(24):9392-9401. doi: 10.1074/jbc.RA119.008300. Epub 2019 Apr 17.

Abstract

Amyloid deposition of WT human β-microglobulin (WT-hβm) in the joints of long-term hemodialysis patients is the hallmark of dialysis-related amyloidosis. , WT-hβm does not form amyloid fibrils at physiological pH and temperature unless co-solvents or other reagents are added. Therefore, understanding how fibril formation is initiated and maintained in the joint space is important for elucidating WT-hβm aggregation and dialysis-related amyloidosis onset. Here, we investigated the roles of collagen I and the commonly administered anticoagulant, low-molecular-weight (LMW) heparin, in the initiation and subsequent aggregation phases of WT-hβm in physiologically relevant conditions. Using thioflavin T fluorescence to study the kinetics of amyloid formation, we analyzed how these two agents affect specific stages of WT-hβm assembly. Our results revealed that LMW-heparin strongly promotes WT-hβm fibrillogenesis during all stages of aggregation. However, collagen I affected WT-hβm amyloid formation in contrasting ways: decreasing the lag time of fibril formation in the presence of LMW-heparin and slowing the rate at higher concentrations. We found that in self-seeded reactions, interaction of collagen I with WT-hβm amyloid fibrils attenuates surface-mediated growth of WT-hβm fibrils, demonstrating a key role of secondary nucleation in WT-hβm amyloid formation. Interestingly, collagen I fibrils did not suppress surface-mediated assembly of WT-hβm monomers when cross-seeded with fibrils formed from the N-terminally truncated variant ΔN6-hβm. Together, these results provide detailed insights into how collagen I and LMW-heparin impact different stages in the aggregation of WT-hβm into amyloid, which lead to dramatic effects on the time course of assembly.

摘要

在长期接受血液透析的患者关节中,野生型人β-微球蛋白(WT-hβm)的淀粉样沉积是透析相关性淀粉样变性的标志。在生理 pH 和温度下,WT-hβm 不会形成淀粉样纤维,除非加入共溶剂或其他试剂。因此,了解纤维形成如何在关节空间中起始和维持对于阐明 WT-hβm 聚集和透析相关性淀粉样变性的发病机制非常重要。在这里,我们研究了胶原 I 和常用抗凝剂低分子量肝素(LMW 肝素)在生理相关条件下 WT-hβm 在起始和随后的聚集阶段中的作用。我们使用硫黄素 T 荧光法研究淀粉样形成的动力学,分析这两种试剂如何影响 WT-hβm 组装的特定阶段。结果表明,LMW 肝素在聚集的所有阶段都强烈促进 WT-hβm 的原纤维形成。然而,胶原 I 以相反的方式影响 WT-hβm 淀粉样形成:在存在 LMW 肝素的情况下,减少纤维形成的滞后时间,并在较高浓度下降低速度。我们发现,在自种子反应中,胶原 I 与 WT-hβm 淀粉样纤维的相互作用减弱了 WT-hβm 纤维的表面介导生长,表明二级成核在 WT-hβm 淀粉样形成中起关键作用。有趣的是,当用从 N 端截断的变体 ΔN6-hβm 形成的纤维进行交叉播种时,胶原 I 纤维不会抑制 WT-hβm 单体的表面介导组装。总之,这些结果提供了详细的见解,了解胶原 I 和 LMW 肝素如何影响 WT-hβm 聚集到淀粉样纤维的不同阶段,从而对组装的时间过程产生巨大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59f2/6579475/e26052dece21/zbc0241906500001.jpg

相似文献

1
Extracellular matrix components modulate different stages in β-microglobulin amyloid formation.
J Biol Chem. 2019 Jun 14;294(24):9392-9401. doi: 10.1074/jbc.RA119.008300. Epub 2019 Apr 17.
2
Heparin strongly enhances the formation of beta2-microglobulin amyloid fibrils in the presence of type I collagen.
J Biol Chem. 2008 Feb 22;283(8):4912-20. doi: 10.1074/jbc.M702712200. Epub 2007 Dec 3.
3
Secondary structure in the core of amyloid fibrils formed from human β₂m and its truncated variant ΔN6.
J Am Chem Soc. 2014 Apr 30;136(17):6313-25. doi: 10.1021/ja4126092. Epub 2014 Apr 16.
4
Distinguishing closely related amyloid precursors using an RNA aptamer.
J Biol Chem. 2014 Sep 26;289(39):26859-26871. doi: 10.1074/jbc.M114.595066. Epub 2014 Aug 6.
6
The residues 4 to 6 at the N-terminus in particular modulate fibril propagation of β-microglobulin.
Acta Biochim Biophys Sin (Shanghai). 2022 Jan 25;54(2):187-198. doi: 10.3724/abbs.2021017.
9
Co-fibrillogenesis of Wild-type and D76N β2-Microglobulin: THE CRUCIAL ROLE OF FIBRILLAR SEEDS.
J Biol Chem. 2016 Apr 29;291(18):9678-89. doi: 10.1074/jbc.M116.720573. Epub 2016 Feb 26.

引用本文的文献

1
Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations.
Anal Chem. 2022 Nov 22;94(46):16113-16121. doi: 10.1021/acs.analchem.2c03352. Epub 2022 Nov 9.
3
Supersaturation-Dependent Formation of Amyloid Fibrils.
Molecules. 2022 Jul 19;27(14):4588. doi: 10.3390/molecules27144588.
4
The residues 4 to 6 at the N-terminus in particular modulate fibril propagation of β-microglobulin.
Acta Biochim Biophys Sin (Shanghai). 2022 Jan 25;54(2):187-198. doi: 10.3724/abbs.2021017.
6
Investigation of D76N β-Microglobulin Using Protein Footprinting and Structural Mass Spectrometry.
J Am Soc Mass Spectrom. 2021 Jul 7;32(7):1583-1592. doi: 10.1021/jasms.0c00438. Epub 2021 Feb 15.
7
The role of the I-state in D76N β-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander?
J Biol Chem. 2020 Aug 28;295(35):12474-12484. doi: 10.1074/jbc.RA120.014901. Epub 2020 Jul 13.
8
Collagen I Weakly Interacts with the β-Sheets of β-Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation.
J Am Chem Soc. 2020 Jan 22;142(3):1321-1331. doi: 10.1021/jacs.9b10421. Epub 2020 Jan 8.
9
Structural mapping of oligomeric intermediates in an amyloid assembly pathway.
Elife. 2019 Sep 25;8:e46574. doi: 10.7554/eLife.46574.

本文引用的文献

1
The structure of a β-microglobulin fibril suggests a molecular basis for its amyloid polymorphism.
Nat Commun. 2018 Oct 30;9(1):4517. doi: 10.1038/s41467-018-06761-6.
2
Molecular Origins of the Compatibility between Glycosaminoglycans and Aβ40 Amyloid Fibrils.
J Mol Biol. 2017 Aug 4;429(16):2449-2462. doi: 10.1016/j.jmb.2017.07.003. Epub 2017 Jul 10.
3
Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation.
Biophys Rev. 2017 Aug;9(4):405-419. doi: 10.1007/s12551-017-0271-9. Epub 2017 Jun 19.
4
Inducing protein aggregation by extensional flow.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4673-4678. doi: 10.1073/pnas.1702724114. Epub 2017 Apr 17.
5
6
Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance.
Biochem Cell Biol. 2017 Jun;95(3):329-337. doi: 10.1139/bcb-2016-0236. Epub 2017 Feb 1.
7
Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):E200-E208. doi: 10.1073/pnas.1615613114. Epub 2016 Dec 23.
8
Dialysis-related amyloidosis: challenges and solutions.
Int J Nephrol Renovasc Dis. 2016 Dec 7;9:319-328. doi: 10.2147/IJNRD.S84784. eCollection 2016.
9
Atomic Details of the Interactions of Glycosaminoglycans with Amyloid-β Fibrils.
J Am Chem Soc. 2016 Jul 13;138(27):8328-31. doi: 10.1021/jacs.6b02816. Epub 2016 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验