Lu Guang-Zhao, Su Ning, Yang Hui-Qing, Zhu Qi, Zhang Wen-Wei, Zheng You-Xuan, Zhou Liang, Zuo Jing-Lin, Chen Zhao-Xu, Zhang Hong-Jie
State Key Laboratory of Coordination Chemistry , Jiangsu Key Laboratory of Advanced Organic Materials , Collaborative Innovation Center of Advanced Microstructures , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China . Email:
State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China . Email:
Chem Sci. 2019 Feb 11;10(12):3535-3542. doi: 10.1039/c8sc05605f. eCollection 2019 Mar 28.
Three red cyclometalated iridium(iii) complexes (4tfmpq)Ir(dipdtc), (4tfmpq)Ir(dpdtc) and (4tfmpq)Ir(Czdtc) (4tfmpq = 4-(4-(trifluoromethyl)phenyl)quinazoline, dipdtc = ,-diisopropyl dithiocarbamate, dpdtc = ,-diphenyl dithiocarbamate, and Czdtc = -carbazolyl dithiocarbamate) containing the unique four-membered Ir-S-C-S backbone ring were synthesized in five minutes at room temperature with good yields, and the Gibbs free energy calculation results indicate that all reactions are exothermic and thermodynamically favorable processes. The emission colors ( = 641-611 nm), photoluminescence quantum efficiencies ( = 58.3-93.0%) and bipolar properties can be effectively regulated by introducing different electron-donating substituents into the dithiocarbamate ancillary ligands. Employing these emitters, organic light emitting diodes (OLEDs) with double emissive layers exhibit excellent performances with a maximum brightness over 60 000 cd m, a maximum current efficiency of 40.68 cd A, a maximum external quantum efficiency (EQE) of 30.54%, and an EQE of 26.79% at the practical luminance of 1000 cd m. These results demonstrate that Ir(iii) complexes with sulfur-containing ligands can be rapidly synthesized at room temperature, which is key to the production of metal luminescent materials for large-scale application in highly efficient OLEDs.
三种含独特四元铱 - 硫 - 碳 - 硫主环的环金属化铱(III)配合物(4tfmpq)Ir(dipdtc)、(4tfmpq)Ir(dpdtc)和(4tfmpq)Ir(Czdtc)(4tfmpq = 4 - (4 - (三氟甲基)苯基)喹唑啉,dipdtc = , - 二异丙基二硫代氨基甲酸盐,dpdtc = , - 二苯基二硫代氨基甲酸盐,Czdtc = - 咔唑基二硫代氨基甲酸盐)在室温下五分钟内即可合成,产率良好,吉布斯自由能计算结果表明所有反应均为放热且热力学有利的过程。通过在二硫代氨基甲酸盐辅助配体中引入不同的给电子取代基,可以有效调节发射颜色( = 641 - 611 nm)、光致发光量子效率( = 58.3 - 93.0%)和双极性质。使用这些发光体,具有双发射层的有机发光二极管(OLED)表现出优异的性能,最大亮度超过60000 cd m,最大电流效率为40.68 cd A,最大外量子效率(EQE)为30.54%,在实际亮度为1000 cd m时EQE为26.79%。这些结果表明含硫配体的铱(III)配合物可以在室温下快速合成,这是大规模应用于高效OLED的金属发光材料生产的关键。