Suppr超能文献

[通过距离测量对助行器使用者的姿势和步态模式进行识别与分类——临床评估与自动分类的比较]

[Recognition and classification of posture and gait patterns of rollator users by distance measurements-a comparison between clinical assessment and automatic classification].

作者信息

Mandel Christian, Choudhury Amit, Hochbaum Karin, Autexier Serge, Budelmann Jeannine

机构信息

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Bremen, Deutschland.

Klinik für Geriatrie und Frührehabilitation, Klinikum Bremen Nord, Hammersbecker Straße 228, 28755, Bremen, Deutschland.

出版信息

Z Gerontol Geriatr. 2020 Mar;53(2):129-137. doi: 10.1007/s00391-019-01544-0. Epub 2019 Apr 17.

Abstract

BACKGROUND

This article describes the development of an add-on module for wheeled walkers dedicated to sensor-based posture and gait pattern recognition with the goal to develop an everyday aid for fall prevention. The core contribution is a clinical study that compared single gait parameter assessments coming from medical staff to those obtained from an automatic classification algorithm, i. e. the Mahalanobis distance over time series of sensor measurements.

METHODS

The walker-module described here extends an off-the-shelf wheeled walker by two depth cameras that observe the torso, pelvic, region and legs of the user. From the stream of depth images, distance measurements to eight relevant feature points on the body surface (shoulders, iliac crests, upper and lower legs) are combined to time series that describe the individual gait cycles. For automatic classification of gait cycle descriptions 14 safety-relevant gait parameters (gait width, height, length, symmetry, variability; flection of torso, knees (l/r), hips (l/r); position, distance to walker; 2‑value, 5‑value gait patterns [While the two-value gait pattern differentiates a gait cycle into physiological and pathological, the five-value gait pattern distinguishes between antalgic, atactic, paretic, protective, and physiological gait]), single classifier algorithms were trained using machine learning techniques based on the mathematical concept of the Mahalanobis distance (distance of individual gait cycles to class averages and corresponding covariance matrices). For this purpose, training and test datasets were gathered in a clinical setting from 29 subjects. Here, the assessment of gait properties given by medical experts served for the labelling of sensorial gait cycle descriptions of the training and test datasets. In order to evaluate the quality of the automated classification in the add-on module a final comparison between human and automatic gait parameter assessment is given.

RESULTS

The gait assessment conducted by trained medical staff served as a comparator for the machine learning gait assessment and showed a relatively uniform class distribution of gait parameters over the group of probands, e. g. 57% showed an increased and 43% a normal distance to the walker. Of the subjects 51% positioned themselves central to the walker, while 41% took a left deviating, and 8% a right deviating position. A further 12 gait parameters were differentiated and evaluated in 2-5 classes. In the following, single gait cycle descriptions of each subject were assessed by trained classification algorithms. The best automatic classification rates over all subjects were given by the distance to walker (99.4%), and the 2-value gait pattern (99.2%). Gait variability (94.6%) and position to walker (94.2%) showed the poorest classification rates. Over all gait parameters and subjects, 96.9% of all gait cycle descriptions were correctly classified.

DISCUSSION/OUTLOOK: With an average classification rate of 96.9%, the described gait classification approach is well suited for a patient-oriented training correction system that informs the user about false posture during every day walker use. A second application scenario is the use in a clinical setting for objectifying the gait assessment of patients. To reach these ambitious goals requires more future research. It includes the replacement of depth cameras by small size distance sensors (1D Lidar), the design and implementation of a suitable walker-user interface, and the evaluation of the proposed classification algorithm by contrasting it to results of modern deep convolutional neural network output.

摘要

背景

本文介绍了一种用于轮式助行器的附加模块的开发,该模块致力于基于传感器的姿势和步态模式识别,旨在开发一种日常防跌倒辅助工具。核心贡献是一项临床研究,该研究将医务人员进行的单一步态参数评估与通过自动分类算法(即基于传感器测量时间序列的马氏距离)获得的评估进行了比较。

方法

这里描述的助行器模块通过两个深度摄像头对现成的轮式助行器进行了扩展,这两个摄像头可观察用户的躯干、骨盆区域和腿部。从深度图像流中,将到身体表面八个相关特征点(肩膀、髂嵴、大腿和小腿)的距离测量值组合成描述个体步态周期的时间序列。为了对步态周期描述进行自动分类,使用基于马氏距离(个体步态周期到类别平均值和相应协方差矩阵的距离)这一数学概念的机器学习技术,训练了14个与安全相关的步态参数(步态宽度、高度、长度、对称性、变异性;躯干、膝盖(左/右)、臀部(左/右)的弯曲度;位置、与助行器的距离;二值、五值步态模式[二值步态模式将一个步态周期分为生理和病理两种,五值步态模式则区分止痛、共济失调、麻痹、保护性和生理步态])的单分类器算法。为此,在临床环境中从29名受试者收集了训练和测试数据集。在此,医学专家对步态特性的评估用于训练和测试数据集的感官步态周期描述的标注。为了评估附加模块中自动分类的质量,对人工和自动步态参数评估进行了最终比较。

结果

训练有素的医务人员进行的步态评估用作机器学习步态评估的比较标准,结果显示在受试组中步态参数的类别分布相对均匀,例如,57%的人到助行器的距离增加,43%的人距离正常。在受试者中,51%的人站在助行器中央,而41%的人向左偏离,8%的人向右偏离。另外12个步态参数被分为2至5类并进行了评估。接下来,由经过训练的分类算法对每个受试者的单个步态周期描述进行评估。所有受试者中最佳的自动分类率由到助行器的距离(99.4%)和二值步态模式(99.2%)给出。步态变异性(94.6%)和相对于助行器的位置(94.2%)的分类率最低。在所有步态参数和受试者中,96.9%的步态周期描述被正确分类。

讨论/展望:所描述的步态分类方法平均分类率为96.9%,非常适合用于面向患者的训练校正系统,该系统可在日常使用助行器时告知用户错误姿势。第二个应用场景是在临床环境中用于客观化患者的步态评估。要实现这些宏伟目标需要更多的未来研究。这包括用小型距离传感器(一维激光雷达)替代深度摄像头、设计和实现合适的助行器-用户界面,以及通过将所提出的分类算法与现代深度卷积神经网络输出的结果进行对比来评估该算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验