Livanas G, Sigrist M, Varelogiannis G
Department of Physics, National Technical University of Athens, GR-15780, Athens, Greece.
Institut für Theoretische Physik, ETH-Zürich, CH-8093, Zürich, Switzerland.
Sci Rep. 2019 Apr 18;9(1):6259. doi: 10.1038/s41598-019-42558-3.
A fundamental obstacle for achieving quantum computation is local decoherence. One way to circumvent this problem rests on the concepts of topological quantum computation using non-local information storage, for example on pairs of Majorana fermions (MFs). The arguably most promising way to generate MFs relies at present on spin-triplet p-wave states of superconductors (SC), which are not abundant in nature, unfortunately. Thus, proposals for their engineering in devices, usually via proximity effect from a conventional SC into materials with strong spin-orbit coupling (SOC), are intensively investigated nowadays. Here we take an alternative path, exploiting the different connections between fields based on a quartet coupling rule for fields introduced by one of us, we demonstrate that, for instance, coexisting Zeeman field with a charge current would provide the conditions to induce p-wave pairing in the presence of singlet superconductivity. This opens new avenues for the engineering of robust MFs in various, not necessarily (quasi-)one-dimensional, superconductor-ferromagnet heterostructures, including such motivated by recent pioneering experiments that report MFs, in particular, without the need of any exotic materials or special structures of intrinsic SOC.
实现量子计算的一个基本障碍是局部退相干。规避这一问题的一种方法基于拓扑量子计算的概念,即使用非局部信息存储,例如基于马约拉纳费米子(MFs)对。目前,产生MFs最有前景的方法可能依赖于超导体(SC)的自旋三重态p波态,但不幸的是,这种态在自然界中并不丰富。因此,目前人们正在深入研究在器件中对其进行工程设计的方案,通常是通过传统超导体与具有强自旋轨道耦合(SOC)的材料之间的近邻效应来实现。在这里,我们采用了一条替代路径,利用基于我们其中一人提出的场的四重耦合规则的不同场之间的联系,我们证明,例如,塞曼场与电荷电流共存将为在单重态超导存在的情况下诱导p波配对提供条件。这为在各种不一定是(准)一维的超导体 - 铁磁体异质结构中设计稳健的MFs开辟了新途径,包括受近期报道MFs的开创性实验启发的异质结构,特别是无需任何奇异材料或固有SOC的特殊结构。