Suppr超能文献

激光诱导击穿光谱和化学计量学方法测定中的营养元素的高灵敏度。

High-Sensitivity Determination of Nutrient Elements in by Laser-induced Breakdown Spectroscopy and Chemometric Methods.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.

Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China.

出版信息

Molecules. 2019 Apr 18;24(8):1525. doi: 10.3390/molecules24081525.

Abstract

High-accuracy and fast detection of nutritive elements in traditional Chinese medicine (PN) is beneficial for providing useful assessment of the healthy alimentation and pharmaceutical value of PN herbs. Laser-induced breakdown spectroscopy (LIBS) was applied for high-accuracy and fast quantitative detection of six nutritive elements in PN samples from eight producing areas. More than 20,000 LIBS spectral variables were obtained to show elemental differences in PN samples. Univariate and multivariate calibrations were used to analyze the quantitative relationship between spectral variables and elements. Multivariate calibration based on full spectra and selected variables by the least absolute shrinkage and selection operator (Lasso) weights was used to compare the prediction ability of the partial least-squares regression (PLS), least-squares support vector machines (LS-SVM), and Lasso models. More than 90 emission lines for elements in PN were found and located. Univariate analysis was negatively interfered by matrix effects. For potassium, calcium, magnesium, zinc, and boron, LS-SVM models based on the selected variables obtained the best prediction performance with values of 0.9546, 0.9176, 0.9412, 0.9665, and 0.9569 and root mean squared error of prediction (RMSEP) of 0.7704 mg/g, 0.0712 mg/g, 0.1000 mg/g, 0.0012 mg/g, and 0.0008 mg/g, respectively. For iron, the Lasso model based on full spectra obtained the best result with an value of 0.9348 and RMSEP of 0.0726 mg/g. The results indicated that the LIBS technique coupled with proper multivariate chemometrics could be an accurate and fast method in the determination of PN nutritive elements for traditional Chinese medicine management and pharmaceutical analysis.

摘要

高精度、快速检测中药(PN)中的营养元素,有利于为 PN 草药的健康饮食和药用价值提供有价值的评估。激光诱导击穿光谱(LIBS)被应用于高精度、快速定量检测来自八个产地的 PN 样品中的六种营养元素。获得了 20000 多个 LIBS 光谱变量,以显示 PN 样品中元素的差异。单变量和多变量校准被用于分析光谱变量与元素之间的定量关系。基于全谱和最小绝对值收缩和选择算子(Lasso)权重选择变量的多元校准被用于比较偏最小二乘回归(PLS)、最小二乘支持向量机(LS-SVM)和 Lasso 模型的预测能力。发现并定位了超过 90 个 PN 元素的发射线。单变量分析受到基质效应的负面影响。对于钾、钙、镁、锌和硼,基于所选变量的 LS-SVM 模型获得了最佳的预测性能, 值分别为 0.9546、0.9176、0.9412、0.9665 和 0.9569,预测误差(RMSEP)分别为 0.7704mg/g、0.0712mg/g、0.1000mg/g、0.0012mg/g 和 0.0008mg/g。对于铁,基于全谱的 Lasso 模型获得了最佳结果, 值为 0.9348,RMSEP 为 0.0726mg/g。结果表明,LIBS 技术与适当的多元化学计量学相结合,是一种用于中药管理和药物分析中 PN 营养元素测定的准确、快速的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6f5/6515346/e811e9935a75/molecules-24-01525-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验