Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz and Research Center for Immunotherapy (FZI), Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany.
Transplantation Immunology, Institute of Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
Med Microbiol Immunol. 2019 Aug;208(3-4):531-542. doi: 10.1007/s00430-019-00604-x. Epub 2019 Apr 19.
As an immune evasion mechanism, cytomegaloviruses (CMVs) have evolved proteins that interfere with cell surface trafficking of MHC class-I (MHC-I) molecules to tone down recognition by antiviral CD8 T cells. This interference can affect the trafficking of recently peptide-loaded MHC-I from the endoplasmic reticulum to the cell surface, thus modulating the presentation of viral peptides, as well as the recycling of pre-existing cell surface MHC-I, resulting in reduction of the level of overall MHC-I cell surface expression. Murine cytomegalovirus (mCMV) was paradigmatic in that it led to the discovery of this immune evasion strategy of CMVs. Members of its m02-m16 gene family code for type-I transmembrane glycoproteins, proven or predicted, most of which carry cargo sorting motifs in their cytoplasmic, C-terminal tail. For the m06 gene product m06 (gp48), the cargo has been identified as being MHC-I, which is linked by m06 to cellular adapter proteins AP-1A and AP-3A through the dileucine motif EPLARLL. Both APs are involved in trans-Golgi network (TGN) cargo sorting and, based on transfection studies, their engagement by the dileucine motif was proposed to be absolutely required to prevent MHC-I exposure at the cell surface. Here, we have tested this prediction in an infection system with the herein newly described recombinant virus mCMV-m06AA, in which the dileucine motif is destroyed by replacing EPLARLL with EPLARAA. This mutation has a phenotype in that the transition of m06-MHC-I complexes from early endosomes (EE) to late endosomes (LE)/lysosomes for degradation is blocked. Consistent with the binding of the MHC-I α-chain to the luminal domain of m06, the m06-mediated disposal of MHC-I did not require the β2m chain of mature MHC-I. Unexpectedly, however, disconnecting MHC-I cargo from AP-1A/3A by the motif mutation in m06 had no notable rescuing impact on overall cell surface MHC-I, though it resulted in some improvement of the presentation of viral antigenic peptides by recently peptide-loaded MHC-I. Thus, the current view on the mechanism by which m06 mediates immune evasion needs to be revised. While the cargo sorting motif is critically involved in the disposal of m06-bound MHC-I in the endosomal/lysosomal pathway at the stage of EE to LE transition, this motif-mediated disposal is not the critical step by which m06 causes immune evasion. We rather propose that engagement of AP-1A/3A by the cargo sorting motif in m06 routes the m06-MHC-I complexes into the endosomal pathway and thereby detracts them from the constitutive cell surface transport.
作为一种免疫逃避机制,巨细胞病毒(CMV)已经进化出了干扰 MHC-I 分子细胞表面运输的蛋白质,从而降低抗病毒 CD8 T 细胞的识别能力。这种干扰可能会影响最近从内质网到细胞表面加载肽的 MHC-I 的运输,从而调节病毒肽的呈递,以及预先存在的细胞表面 MHC-I 的回收,导致整体 MHC-I 细胞表面表达水平降低。鼠巨细胞病毒(mCMV)是这一免疫逃避策略的典范,它导致了这一策略的发现。其 m02-m16 基因家族的成员编码 I 型跨膜糖蛋白,已被证明或预测,其中大多数在其细胞质 C 末端尾部携带货物分拣基序。对于 m06 基因产物 m06(gp48),货物已被确定为 MHC-I,m06 通过亮氨酸二肽基序 EPLARLL 将 MHC-I 与细胞衔接蛋白 AP-1A 和 AP-3A 连接。这两种 AP 都参与了高尔基体网络(TGN)货物分拣,并且基于转染研究,提出它们与亮氨酸二肽基序的结合对于防止 MHC-I 在细胞表面暴露是绝对必需的。在这里,我们在一个新描述的重组病毒 mCMV-m06AA 的感染系统中测试了这一预测,在该系统中,通过用 EPLARAA 取代 EPLARLL 破坏了亮氨酸二肽基序。该突变具有以下表型,即 m06-MHC-I 复合物从早期内体(EE)向晚期内体(LE)/溶酶体进行降解的转变被阻断。与 MHC-I α 链与 m06 的腔域结合一致,m06 介导的 MHC-I 处置不需要成熟 MHC-I 的 β2m 链。然而,出乎意料的是,通过 m06 中的基序突变将 MHC-I 货物与 AP-1A/3A 分离,对整体细胞表面 MHC-I 没有明显的挽救作用,尽管它导致最近加载肽的 MHC-I 呈递病毒抗原肽的一些改善。因此,目前关于 m06 介导免疫逃避的机制的观点需要修改。虽然货物分拣基序在 EE 到 LE 转变阶段的内体/溶酶体途径中对于 m06 结合的 MHC-I 的处置至关重要,但该基序介导的处置并不是 m06 引起免疫逃避的关键步骤。我们提出,m06 中的货物分拣基序与 AP-1A/3A 的结合将 m06-MHC-I 复合物引导到内体途径,并因此阻止它们从组成型细胞表面运输中逸出。