Mitchell Jonathan, Souza Andre, Fordham Edmund, Boyd Austin
Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom.
Schlumberger Brazil Technology Integration Center, Avenida Republica do Chile, 330, 20031-170 Rio de Janeiro, Brazil.
J Chem Phys. 2019 Apr 21;150(15):154708. doi: 10.1063/1.5092159.
Porous media characterized by a hierarchy of length scales are ubiquitous in industry and nature, and include carbonate rocks, cements, heterogeneous catalysts, and biological cells. Nuclear magnetic resonance (NMR) is a popular tool for studying liquid-saturated porous materials, where the spin relaxation rate is generally considered proportional to pore size. However, in porous granular media, the relaxation rate is modified by diffusion between the intraparticle and interparticle pores. The observed relaxation rates do not reflect the pore size under such conditions. Deconvolving the various contributions of surface relaxation, geometry, and diffusion is nontrivial, and forward models are a powerful technique for elucidating the underlying pore structure. Various forward models have been proposed previously, including analytic solutions and random walk simulations. Here, a finite element method is adopted to simulate the diffusion of nuclear magnetization in a coupled pore geometry. We validate our model against existing solutions and use the simulations to determine the surface relaxivity of powdered silica by matching experimental results. The finite element approach is more versatile than other modeling methods, allowing direct visualization of the diffusing magnetization and being trivially extensible to multidimensional NMR exchange experiments.
具有多级长度尺度特征的多孔介质在工业和自然界中普遍存在,包括碳酸盐岩、水泥、多相催化剂和生物细胞。核磁共振(NMR)是研究液体饱和多孔材料的常用工具,其中自旋弛豫率通常被认为与孔径成正比。然而,在多孔颗粒介质中,弛豫率会因颗粒内孔隙和颗粒间孔隙之间的扩散而改变。在这种情况下,观察到的弛豫率并不能反映孔径。对表面弛豫、几何形状和扩散的各种贡献进行反褶积并非易事,而正向模型是阐明潜在孔隙结构的有力技术。此前已经提出了各种正向模型,包括解析解和随机游走模拟。在这里,采用有限元方法来模拟耦合孔隙几何结构中核磁化的扩散。我们将我们的模型与现有解进行验证,并通过匹配实验结果来使用模拟确定粉末状二氧化硅的表面弛豫率。有限元方法比其他建模方法更通用,它允许直接可视化扩散的磁化强度,并且很容易扩展到多维NMR交换实验。