Yan Yuantao, Xu Zhixin, Liu Congcong, Dou Huanglin, Wei Jingjiang, Zhao Xiaoli, Ma Jingjing, Dong Qiang, Xu Haisong, He Yu-Shi, Ma Zi-Feng, Yang Xiaowei
School of Materials Science and Engineering , Tongji University , Shanghai 200123 , China.
School of Materials Science and Engineering , Chang'an University , Xi'an 710064 , China.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17375-17383. doi: 10.1021/acsami.9b01909. Epub 2019 Apr 30.
The high-capacity silicon anode is regarded as a promising electrode material for next-generation lithium-ion batteries. Unfortunately, its practical application is still severely hindered by electrode fracture and unstable solid electrolyte interphase during cycling. Herein, we design a structure of encapsulating silicon in a robust "janus shell", in which an internal graphene shell with sufficient void space is used to absorb the mechanical stress induced by volume expansion, and the conformal carbon outer shell is introduced to strongly bond the loosely stacked graphene shell and simultaneously seal the nanopores on the surface. With the ultrastable janus carbon shell, the excellent structural integrity of the electrode and stable solid electrolyte interphase layer could be effectively preserved, resulting in an impressive cycling behavior. Indeed, the as-synthesized anodes demonstrate superior cycle stability and excellent rate performance, delivering a high reversible capacity of 1416 mA h g at a current density of 0.2 A g and 852 mA h g at a high current density of 5 A g. Remarkably, the superior capacity retention of 88.5% could be achieved even after 400 cycles at a high current density of 2 A g. More importantly, this work opens up a novel avenue to address high-capacity anodes with a large volume change.
高容量硅阳极被认为是下一代锂离子电池极具前景的电极材料。不幸的是,其实际应用仍受到循环过程中电极断裂和不稳定的固体电解质界面的严重阻碍。在此,我们设计了一种将硅封装在坚固的“双面壳”中的结构,其中具有足够空隙空间的内部石墨烯壳用于吸收体积膨胀引起的机械应力,引入保形碳外壳以牢固地粘结松散堆叠的石墨烯壳并同时密封表面的纳米孔。借助超稳定的双面碳壳,可有效保持电极出色的结构完整性和稳定的固体电解质界面层,从而实现令人印象深刻的循环性能。实际上,所合成的阳极表现出卓越的循环稳定性和出色的倍率性能,在电流密度为0.2 A g时可逆容量高达1416 mA h g,在高电流密度为5 A g时为852 mA h g。值得注意的是,即使在2 A g的高电流密度下循环400次后,仍可实现88.5%的卓越容量保持率。更重要的是,这项工作为解决具有大体积变化的高容量阳极开辟了一条新途径。