Suppr超能文献

多变量分析揭示了与酒精依赖个体脑电图异常相关的生物学成分,这些成分涉及神经元信号和免疫调节。这些个体来自于酒精遗传学合作研究队列。

Multivariate Analyses Reveal Biological Components Related to Neuronal Signaling and Immunity Mediating Electroencephalograms Abnormalities in Alcohol-Dependent Individuals from the Collaborative Study on the Genetics of Alcoholism Cohort.

机构信息

Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, Connecticut.

Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York.

出版信息

Alcohol Clin Exp Res. 2019 Jul;43(7):1462-1477. doi: 10.1111/acer.14063. Epub 2019 May 21.

Abstract

BACKGROUND

The underlying molecular mechanisms associated with alcohol use disorder (AUD) risk have only been partially revealed using traditional approaches such as univariate genomewide association and linkage-based analyses. We therefore aimed to identify gene clusters related to Electroencephalograms (EEG) neurobiological phenotypes distinctive to individuals with AUD using a multivariate approach.

METHODS

The current project adopted a bimultivariate data-driven approach, parallel independent component analysis (para-ICA), to derive and explore significant genotype-phenotype associations in a case-control subset of the Collaborative Study on the Genetics of Alcoholism (COGA) dataset. Para-ICA subjects comprised N = 799 self-reported European Americans (367 controls and 432 AUD cases), recruited from COGA, who had undergone resting EEG and genotyping. Both EEG and genomewide single nucleotide polymorphism (SNP) data were preprocessed prior to being subjected to para-ICA in order to derive genotype-phenotype relationships.

RESULTS

From the data, 4 EEG frequency and 4 SNP components were estimated, with 2 significantly correlated EEG-genetic relationship pairs. The first such pair primarily represented theta activity, negatively correlated with a genetic cluster enriched for (but not limited to) ontologies/disease processes representing cell signaling, neurogenesis, transmembrane drug transportation, alcoholism, and lipid/cholesterol metabolism. The second component pair represented mainly alpha activity, positively correlated with a genetic cluster with ontologies similarly enriched as the first component. Disease-related enrichments for this component revealed heart and autoimmune disorders as top hits. Loading coefficients for both the alpha and theta components were significantly reduced in cases compared to controls.

CONCLUSIONS

Our data suggest plausible multifactorial genetic components, primarily enriched for neuronal/synaptic signaling/transmission, immunity, and neurogenesis, mediating low-frequency alpha and theta abnormalities in alcohol addiction.

摘要

背景

使用传统方法,如单变量全基因组关联和连锁分析,仅部分揭示了与酒精使用障碍(AUD)风险相关的潜在分子机制。因此,我们旨在使用多变量方法识别与 EEG 神经生物学表型相关的基因簇,这些表型在 AUD 个体中具有独特性。

方法

本研究采用双变量数据驱动方法,平行独立成分分析(para-ICA),从 COGA 数据集的病例对照亚集中推导出并探索 EEG 神经生物学表型与基因型显著相关的基因簇。para-ICA 受试者包括 N = 799 名自我报告的欧洲裔美国人(367 名对照和 432 名 AUD 病例),他们来自 COGA,接受了静息 EEG 和基因分型。在进行 para-ICA 之前,对 EEG 和全基因组单核苷酸多态性(SNP)数据进行预处理,以推导出基因型与表型的关系。

结果

从数据中估计了 4 个 EEG 频率和 4 个 SNP 成分,其中有 2 个 EEG-遗传关系对显著相关。第一对主要代表θ活动,与一个富含(但不限于)代表细胞信号、神经发生、跨膜药物转运、酒精和脂质/胆固醇代谢的本体论/疾病过程的遗传簇呈负相关。第二对成分主要代表α活动,与一个富含与第一成分相似的本体论的遗传簇呈正相关。该成分的疾病相关富集揭示了心脏和自身免疫疾病是顶级靶点。与对照组相比,病例组的α和θ成分的加载系数显著降低。

结论

我们的数据表明,主要富集神经元/突触信号转导、免疫和神经发生的多因素遗传成分,介导了酒精成瘾中的低频α和θ异常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验