Wu Xiaoli, Zhou Guoli, Cui Xulin, Li Yifan, Wang Jingtao, Cao Xingzhong, Zhang Peng
School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China.
Multi-discipline Research Division, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17804-17813. doi: 10.1021/acsami.9b03753. Epub 2019 May 2.
Polymeric thin film composite (TFC) membranes have been proven promising for a wide range of separation applications. However, their development is significantly hindered by low permeance (below 8.0 L m h bar). Here, we report the fabrication of new films with nanoparticle-assembled structure via interfacial polymerization using quantum dots (QDs) as building blocks. The tailored QDs with hydrophobic and hydrophilic regions permit cross-linking into nanoparticle-assembled defect-free thin films. Significantly, amphipathic QDs show good affinity to polar and nonpolar molecules, facilitating their fast dissolution into film. Meanwhile, the nanopores (∼1.4 nm) render fleet diffusion of molecules, which highly promotes the transfer of molecules within the film. This synergetic effect endows the resultant TFC membrane with high permeance, over 2 orders of magnitude higher than the conventional polyamide films. The permeances for acetonitrile and n-hexane reach 46.9 and 50.8 L m h bar, respectively. We demonstrate that films fabricated by hydrophilic and hydrophobic QDs exhibit different molecular transfer mechanisms, and the corresponding model equations are established. The film fabricated by amphipathic QDs shows a combination transfer mechanism of the two models. Furthermore, those QD-based TFC membranes display favorable structural and operational stability, holding promise for industrial separation applications.
聚合物薄膜复合(TFC)膜已被证明在广泛的分离应用中具有潜力。然而,其发展受到低渗透率(低于8.0 L m h bar)的显著阻碍。在此,我们报告了通过界面聚合使用量子点(QDs)作为构建块制备具有纳米颗粒组装结构的新型薄膜。具有疏水和亲水区域的定制量子点允许交联形成无缺陷的纳米颗粒组装薄膜。值得注意的是,两亲性量子点对极性和非极性分子表现出良好的亲和力,促进它们快速溶解到薄膜中。同时,纳米孔(约1.4纳米)使分子能够快速扩散,极大地促进了分子在薄膜内的传输。这种协同效应赋予所得的TFC膜高渗透率,比传统聚酰胺膜高出2个数量级以上。乙腈和正己烷的渗透率分别达到46.9和50.8 L m h bar。我们证明了由亲水和疏水量子点制备的薄膜表现出不同的分子传输机制,并建立了相应的模型方程。由两亲性量子点制备的薄膜表现出两种模型的组合传输机制。此外,那些基于量子点的TFC膜显示出良好的结构和操作稳定性,在工业分离应用中具有前景。