Suppr超能文献

利用组织特异性边界效应提高脑胶质瘤生长的模型预测。

Improved model prediction of glioma growth utilizing tissue-specific boundary effects.

机构信息

Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA.

Division of Mathematical Oncology, City of Hope, Duarte, CA, USA.

出版信息

Math Biosci. 2019 Jun;312:59-66. doi: 10.1016/j.mbs.2019.04.004. Epub 2019 Apr 19.

Abstract

UNLABELLED

Kinetic parameter estimates for mathematical models of glioblastoma multiforme (GBM), derived from clinical scans, have been used to predict the occurrence of hypoxia, necrosis, response to radiation therapy, and overall survival. Modeling GBM growth in a cerebral model encounters anatomical boundaries that interfere with model calibration from clinical measurements.

METHODS

The effect of boundaries is examined on both spherically symmetric and anatomical models of tumor growth. This effect is incorporated into a method that updates kinetic parameters. The efficacy of this method in reproducing clinical image-derived subject data is evaluated.

RESULTS

Spherically symmetric simulations of tumor growth with simple boundaries behave predictably when in a linear phase of growth. Anatomic simulations of eleven out of twenty subjects demonstrated improved fit to subject data with the new method. When only subjects exhibiting linear growth are considered, eight out of nine subject demonstrate improved fit to the data.

CONCLUSION

Anatomical boundaries to tumor growth measurably deflect progression and affect estimates of kinetic parameters. The presented method reliably updates kinetic parameters to fit anatomic computational models to clinically derived subject data when those data are in a linear regime.

摘要

目的

从临床扫描中得出的多形性胶质母细胞瘤(GBM)数学模型的动力学参数估计已被用于预测缺氧、坏死、对放射治疗的反应和总生存期。在大脑模型中对 GBM 生长进行建模时,会遇到解剖学边界,这会干扰从临床测量中进行模型校准。

方法

研究了边界对球形对称和肿瘤生长解剖模型的影响。将此影响纳入了一种更新动力学参数的方法中。评估了该方法在复制临床图像衍生的受试者数据方面的效果。

结果

在生长的线性阶段,具有简单边界的球形对称肿瘤生长模拟可进行预测。11 个受试者中的 11 个受试者的解剖模拟使用新方法可以更好地拟合受试者数据。当仅考虑线性生长的受试者时,9 个受试者中有 8 个可以更好地拟合数据。

结论

肿瘤生长的解剖边界可明显改变进展并影响动力学参数的估计。当这些数据处于线性状态时,所提出的方法可以可靠地更新动力学参数,以将解剖计算模型拟合到临床衍生的受试者数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验