Suppr超能文献

h-BNC结构在表面增强拉曼光谱(SERS)和表面增强高分辨拉曼光谱(SEHRS)中的潜在应用:理论视角

Potential Application of h-BNC Structures in SERS and SEHRS Spectroscopies: A Theoretical Perspective.

作者信息

Gil-Guerrero Sara, Otero Nicolás, Queizán Marta, Mandado Alonso Marcos

机构信息

Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain.

出版信息

Sensors (Basel). 2019 Apr 21;19(8):1896. doi: 10.3390/s19081896.

Abstract

In this work, the electronic and optical properties of hybrid boron-nitrogen-carbon structures (h-BNCs) with embedded graphene nanodisks are investigated. Their molecular affinity is explored using pyridine as model system and comparing the results with the corresponding isolated graphene nanodisks. Time-dependent density functional theory (TDDFT) analysis of the electronic excited states was performed in the complexes in order to characterize possible surface and charge transfer resonances in the UV region. Static and dynamic (hyper)polarizabilities were calculated with coupled-perturbed Kohn-Sham theory (CPKS) and the linear and nonlinear optical responses of the complexes were analyzed in detail using laser excitation wavelengths available for (Hyper)Raman experiments and near-to-resonance excitation wavelengths. Enhancement factors around 10 and 10 were found for the polarizability and first order hyperpolarizability, respectively. The quantum chemical simulations performed in this work point out that nanographenes embedded within hybrid h-BNC structures may serve as good platforms for enhancing the (Hyper)Raman activity of organic molecules immobilized on their surfaces and for being employed as substrates in surface enhanced (Hyper)Raman scattering (SERS and SEHRS). Besides the better selectivity and improved signal-to-noise ratio of pristine graphene with respect to metallic surfaces, the confinement of the optical response in these hybrid h-BNC systems leads to strong localized surface resonances in the UV region. Matching these resonances with laser excitation wavelengths would solve the problem of the small enhancement factors reported in Raman experiments using pristine graphene. This may be achieved by tuning the size/shape of the embedded nanographene structure.

摘要

在这项工作中,研究了嵌入石墨烯纳米盘的硼 - 氮 - 碳混合结构(h - BNCs)的电子和光学性质。使用吡啶作为模型体系来探索它们的分子亲和力,并将结果与相应的孤立石墨烯纳米盘进行比较。为了表征紫外区域可能的表面和电荷转移共振,对复合物中的电子激发态进行了含时密度泛函理论(TDDFT)分析。利用耦合微扰Kohn - Sham理论(CPKS)计算了静态和动态(超)极化率,并使用适用于(超)拉曼实验的激光激发波长和近共振激发波长详细分析了复合物的线性和非线性光学响应。发现极化率和一阶超极化率的增强因子分别约为10和10。这项工作中进行的量子化学模拟指出,嵌入在混合h - BNC结构中的纳米石墨烯可以作为增强固定在其表面的有机分子的(超)拉曼活性以及用作表面增强(超)拉曼散射(SERS和SEHRS)底物的良好平台。除了相对于金属表面原始石墨烯具有更好的选择性和改进的信噪比之外,这些混合h - BNC系统中光学响应的限制导致在紫外区域出现强烈的局域表面共振。将这些共振与激光激发波长匹配将解决使用原始石墨烯的拉曼实验中报道的增强因子较小的问题。这可以通过调整嵌入的纳米石墨烯结构的尺寸/形状来实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a4/6514874/4c0c0dafd0ed/sensors-19-01896-g001.jpg

相似文献

2
Confinement on the optical response in h-BNCs: Towards highly efficient SERS-active 2D substrates.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 5;266:120451. doi: 10.1016/j.saa.2021.120451. Epub 2021 Sep 29.
4
Excitation Conditions for Surface-Enhanced Hyper Raman Scattering With Biocompatible Gold Nanosubstrates.
Front Chem. 2021 May 17;9:680905. doi: 10.3389/fchem.2021.680905. eCollection 2021.
5
Utilizing Molecular Hyperpolarizability for Trace Analysis: A Surface-Enhanced Hyper-Raman Scattering Study of Uranyl Ion.
ACS Omega. 2018 Jun 20;3(6):6660-6664. doi: 10.1021/acsomega.8b01147. eCollection 2018 Jun 30.
6
Exploring Excited State Landscapes with Surface Enhanced Hyper-Raman Spectroscopy.
ACS Nano. 2024 Aug 13;18(32):20827-20834. doi: 10.1021/acsnano.4c06429. Epub 2024 Aug 1.
7
Surface enhanced hyper Raman scattering (SEHRS) and its applications.
Chem Soc Rev. 2017 Jul 7;46(13):3980-3999. doi: 10.1039/c7cs00137a. Epub 2017 May 22.
8
Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.
J Chem Theory Comput. 2016 Dec 13;12(12):5968-5978. doi: 10.1021/acs.jctc.6b00940. Epub 2016 Nov 7.
9
Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures.
Phys Chem Chem Phys. 2015 Oct 21;17(39):26093-100. doi: 10.1039/c5cp03844h. Epub 2015 Sep 17.
10
Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene.
J Phys Chem C Nanomater Interfaces. 2016 Sep 22;120(37):20702-20709. doi: 10.1021/acs.jpcc.6b01895. Epub 2016 Apr 22.

引用本文的文献

1
Hierarchical Assembly of a Micro- and Macroporous Hydrogen-Bonded Organic Framework with Tailored Single-Crystal Size.
Angew Chem Int Ed Engl. 2022 Nov 21;61(47):e202208677. doi: 10.1002/anie.202208677. Epub 2022 Oct 19.

本文引用的文献

1
Renaissance of an Old Topic: From Borazines to BN-doped Nanographenes.
Chimia (Aarau). 2017 Sep 27;71(9):550-557. doi: 10.2533/chimia.2017.550.
3
Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
Sci Adv. 2016 Jul 22;2(7):e1600322. doi: 10.1126/sciadv.1600322. eCollection 2016 Jul.
4
Electron Density Based Partitioning Scheme of Interaction Energies.
J Chem Theory Comput. 2011 Mar 8;7(3):633-41. doi: 10.1021/ct100730a. Epub 2011 Feb 7.
5
Hirshfeld-based intrinsic polarizability density representations as a tool to analyze molecular polarizability.
J Comput Chem. 2015 Sep 15;36(24):1831-43. doi: 10.1002/jcc.24003. Epub 2015 Jul 21.
6
Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
Acc Chem Res. 2015 Jul 21;48(7):1862-70. doi: 10.1021/ar500466u. Epub 2015 Jun 9.
7
Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene.
Nanoscale Res Lett. 2015 Apr 2;10:163. doi: 10.1186/s11671-015-0869-4. eCollection 2015.
8
Molecular selectivity of graphene-enhanced Raman scattering.
Nano Lett. 2015 May 13;15(5):2892-901. doi: 10.1021/nl5045988. Epub 2015 Apr 2.
10
Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.
Nano Lett. 2014 Jun 11;14(6):3033-40. doi: 10.1021/nl404610c. Epub 2014 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验