Suppr超能文献

CLEASE:一种通用且用户友好的簇扩展方法实现。

CLEASE: a versatile and user-friendly implementation of cluster expansion method.

作者信息

Chang Jin Hyun, Kleiven David, Melander Marko, Akola Jaakko, Garcia-Lastra Juan Maria, Vegge Tejs

机构信息

Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

出版信息

J Phys Condens Matter. 2019 Aug 14;31(32):325901. doi: 10.1088/1361-648X/ab1bbc. Epub 2019 Apr 23.

Abstract

Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.

摘要

具有替代无序性的材料,如多组分合金以及混合金属氧化物/氟氧化物,在许多科技领域都极为重要。无序材料构成了一个极其庞大的构型空间,这使得利用诸如密度泛函理论等第一性原理计算方法进行人工探索几乎不可能,因为计算成本过高。因此,使用诸如团簇展开(CE)等方法对于增进我们对无序材料的理解至关重要。CE通过将第一性原理计算结果映射到一个评估速度快得多的哈密顿量上,极大地降低了计算成本。在这项工作中,我们展示了我们对CE方法的实现,它被集成到原子模拟环境(ASE)开源软件包中。这个通用且用户友好的代码自动化了CE复杂的设置和构建过程,同时给予用户调整设置以及导入他们自己的结构和先前计算结果的灵活性。机器学习中的正则化技术等最新进展也在开发的代码中得以实现。该代码允许用户在任何体晶格结构上构建CE,这使其在涉及复杂材料的广泛应用中很有用。我们通过分析两种具有不同复杂度的示例材料来展示我们实现的功能:一种二元金属合金和一种无序的锂铬氟氧化物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验