Suppr超能文献

硅化细胞壁作为硅藻的防御特征。

Silicified cell walls as a defensive trait in diatoms.

机构信息

Centre for Ocean Life, Technical University of Denmark, DTU Aqua , Kemitorvet B201, Kongens Lyngby 2800 , Denmark.

出版信息

Proc Biol Sci. 2019 Apr 24;286(1901):20190184. doi: 10.1098/rspb.2019.0184.

Abstract

Diatoms contribute nearly half of the marine primary production. These microalgae differ from other phytoplankton groups in having a silicified cell wall, which is the strongest known biological material relative to its density. While it has been suggested that a siliceous wall may have evolved as a mechanical protection against grazing, empirical evidence of its defensive role is limited. Here, we experimentally demonstrate that grazing by adult copepods and nauplii on diatoms is approximately inversely proportional to their silica content, both within and among diatom species. While a sixfold increase in silica content leads to a fourfold decrease in copepod grazing, silicification provides no protection against protozoan grazers that directly engulf their prey. We also found that the wall provides limited protection to cells ingested by copepods, since less than 1% of consumed cells were alive in the faecal pellets. Moreover, silica deposition in diatoms decreases with increasing growth rates, suggesting a possible cost of defence. Overall, our results demonstrate that thickening of silica walls is an effective defence strategy against copepods. This suggests that the plasticity of silicification in diatoms may have evolved as a response to copepod grazing pressure, whose specialized tools to break silicified walls have coevolved with diatoms.

摘要

硅藻贡献了近一半的海洋初级生产力。这些微藻与其他浮游植物群的不同之处在于它们有硅化的细胞壁,这是已知的相对于其密度最强的生物材料。虽然有人认为硅质壁可能是作为一种抵御捕食的机械保护而进化的,但关于其防御作用的经验证据是有限的。在这里,我们通过实验证明,成年桡足类和无节幼体对硅藻的摄食与硅含量呈反比,无论是在硅藻物种内部还是之间。虽然硅含量增加六倍会导致桡足类摄食减少四倍,但硅化并不能防止直接吞噬猎物的原生动物捕食者。我们还发现,细胞壁对被桡足类摄入的细胞提供的保护有限,因为在粪便颗粒中只有不到 1%的被消耗的细胞还活着。此外,硅藻中的硅沉积随生长速率的增加而减少,这表明可能存在防御成本。总的来说,我们的结果表明,硅化细胞壁的增厚是一种有效的防御策略,可以抵御桡足类的捕食。这表明硅藻中硅化的可塑性可能是作为对桡足类捕食压力的一种反应而进化的,而桡足类专门用于破坏硅化壁的工具也与硅藻共同进化。

相似文献

1
Silicified cell walls as a defensive trait in diatoms.
Proc Biol Sci. 2019 Apr 24;286(1901):20190184. doi: 10.1098/rspb.2019.0184.
2
Grazing-induced changes in cell wall silicification in a marine diatom.
Protist. 2007 Jan;158(1):21-8. doi: 10.1016/j.protis.2006.09.002. Epub 2006 Nov 1.
3
4
Induction of domoic acid production in diatoms-Types of grazers and diatoms are important.
Harmful Algae. 2018 Nov;79:64-73. doi: 10.1016/j.hal.2018.06.005. Epub 2018 Jul 2.
5
Can domoic acid affect escape response in copepods?
Harmful Algae. 2018 Nov;79:50-52. doi: 10.1016/j.hal.2018.08.009. Epub 2018 Sep 21.
6
A siliceous arms race in pelagic plankton.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2407876121. doi: 10.1073/pnas.2407876121. Epub 2024 Aug 19.
7
Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae.
Chembiochem. 2005 Jun;6(6):946-59. doi: 10.1002/cbic.200400348.
10
Copepods drive large-scale trait-mediated effects in marine plankton.
Sci Adv. 2019 Feb 20;5(2):eaat5096. doi: 10.1126/sciadv.aat5096. eCollection 2019 Feb.

引用本文的文献

1
Inorganic carbon enrichment does not increase production of polyunsaturated aldehydes in a pelagic and benthic diatom.
PLoS One. 2025 Jul 10;20(7):e0328171. doi: 10.1371/journal.pone.0328171. eCollection 2025.
2
Eco-physiological response of and sp. to increases in irradiance and temperature.
J Plankton Res. 2025 Jun 15;47(4):fbaf023. doi: 10.1093/plankt/fbaf023. eCollection 2025 Jul-Aug.
3
A siliceous arms race in pelagic plankton.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2407876121. doi: 10.1073/pnas.2407876121. Epub 2024 Aug 19.
4
Mechanism of branching morphogenesis inspired by diatom silica formation.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2309518121. doi: 10.1073/pnas.2309518121. Epub 2024 Feb 29.
5
Diatom-mediated food web functioning under ocean artificial upwelling.
Sci Rep. 2024 Feb 17;14(1):3955. doi: 10.1038/s41598-024-54345-w.
6
A review of the taxonomic diversity, host-parasite interactions, and experimental research on chytrids that parasitize diatoms.
Front Microbiol. 2023 Oct 30;14:1281648. doi: 10.3389/fmicb.2023.1281648. eCollection 2023.
7
Algal blooms in the ocean: hot spots for chemically mediated microbial interactions.
Nat Rev Microbiol. 2024 Mar;22(3):138-154. doi: 10.1038/s41579-023-00975-2. Epub 2023 Oct 13.
8
Impact of Pacific Ocean heatwaves on phytoplankton community composition.
Commun Biol. 2023 Mar 13;6(1):263. doi: 10.1038/s42003-023-04645-0.
9
10
Morphological, physiological, and transcriptional responses of the freshwater diatom to elevated pH conditions.
Front Microbiol. 2022 Nov 25;13:1044464. doi: 10.3389/fmicb.2022.1044464. eCollection 2022.

本文引用的文献

1
Diatom frustules protect DNA from ultraviolet light.
Sci Rep. 2018 Mar 23;8(1):5138. doi: 10.1038/s41598-018-21810-2.
2
Phytoplankton defence mechanisms: traits and trade-offs.
Biol Rev Camb Philos Soc. 2018 May;93(2):1269-1303. doi: 10.1111/brv.12395. Epub 2018 Jan 21.
3
Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey.
Mar Genomics. 2017 Oct;35:1-18. doi: 10.1016/j.margen.2017.07.001. Epub 2017 Jul 19.
4
Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2017-22. doi: 10.1073/pnas.1519790113. Epub 2016 Feb 8.
7
The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment.
PLoS One. 2013 May 7;8(5):e59548. doi: 10.1371/journal.pone.0059548. Print 2013.
9
Grazing-induced changes in cell wall silicification in a marine diatom.
Protist. 2007 Jan;158(1):21-8. doi: 10.1016/j.protis.2006.09.002. Epub 2006 Nov 1.
10
Copepods induce paralytic shellfish toxin production in marine dinoflagellates.
Proc Biol Sci. 2006 Jul 7;273(1594):1673-80. doi: 10.1098/rspb.2006.3502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验