Senyuk Bohdan, Aplinc Jure, Ravnik Miha, Smalyukh Ivan I
Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA.
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.
Nat Commun. 2019 Apr 23;10(1):1825. doi: 10.1038/s41467-019-09777-8.
Achieving and exceeding diversity of colloidal analogs of chemical elements and molecules as building blocks of matter has been the central goal and challenge of colloidal science ever since Einstein introduced the colloidal atom paradigm. Recent advances in colloids assembly have been achieved by exploiting the machinery of DNA hybridization but robust physical means of defining colloidal elements remain limited. Here we introduce physical design principles allowing us to define high-order elastic multipoles emerging when colloids with controlled shapes and surface alignment are introduced into a nematic host fluid. Combination of experiments and numerical modeling of equilibrium field configurations using a spherical harmonic expansion allow us to probe elastic multipole moments, bringing analogies with electromagnetism and a structure of atomic orbitals. We show that, at least in view of the symmetry of the "director wiggle wave functions," diversity of elastic colloidal atoms can far exceed that of known chemical elements.
自从爱因斯坦引入胶体原子范式以来,实现并超越作为物质构成要素的化学元素和分子的胶体类似物的多样性,一直是胶体科学的核心目标和挑战。胶体组装的最新进展是通过利用DNA杂交机制实现的,但定义胶体元素的强大物理方法仍然有限。在这里,我们介绍了物理设计原理,这些原理使我们能够定义当具有可控形状和表面排列的胶体被引入向列型主体流体时出现的高阶弹性多极子。利用球谐展开对平衡场构型进行实验和数值模拟,使我们能够探测弹性多极矩,从而与电磁学和原子轨道结构进行类比。我们表明,至少从“指向矢摆动波函数”的对称性来看,弹性胶体原子的多样性可以远远超过已知化学元素的多样性。