Suppr超能文献

通过序列分析揭示蛋白质的进化约束。

Revealing evolutionary constraints on proteins through sequence analysis.

机构信息

Department of Engineering Physics, Tsinghua University, Beijing, China.

Beijing Computational Science Research Center, Beijing, China.

出版信息

PLoS Comput Biol. 2019 Apr 24;15(4):e1007010. doi: 10.1371/journal.pcbi.1007010. eCollection 2019 Apr.

Abstract

Statistical analysis of alignments of large numbers of protein sequences has revealed "sectors" of collectively coevolving amino acids in several protein families. Here, we show that selection acting on any functional property of a protein, represented by an additive trait, can give rise to such a sector. As an illustration of a selected trait, we consider the elastic energy of an important conformational change within an elastic network model, and we show that selection acting on this energy leads to correlations among residues. For this concrete example and more generally, we demonstrate that the main signature of functional sectors lies in the small-eigenvalue modes of the covariance matrix of the selected sequences. However, secondary signatures of these functional sectors also exist in the extensively-studied large-eigenvalue modes. Our simple, general model leads us to propose a principled method to identify functional sectors, along with the magnitudes of mutational effects, from sequence data. We further demonstrate the robustness of these functional sectors to various forms of selection, and the robustness of our approach to the identification of multiple selected traits.

摘要

大量蛋白质序列比对的统计分析揭示了几个蛋白质家族中共同进化的氨基酸“扇区”。在这里,我们表明,代表加性性状的蛋白质任何功能特性的选择都可能产生这样的扇区。作为选择性状的一个例子,我们考虑弹性网络模型中一个重要构象变化的弹性能量,并且表明对该能量的选择导致残基之间的相关性。对于这个具体的例子和更一般的情况,我们证明了功能扇区的主要特征在于所选序列协方差矩阵的小特征值模式。然而,这些功能扇区的次要特征也存在于广泛研究的大特征值模式中。我们的简单、通用模型使我们能够提出一种从序列数据中识别功能扇区及其突变效应大小的原则性方法。我们进一步证明了这些功能扇区对各种选择形式的稳健性,以及我们的方法对多个选择性状的识别的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc86/6502352/8d2065b948eb/pcbi.1007010.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验