School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Small. 2019 May;15(22):e1900157. doi: 10.1002/smll.201900157. Epub 2019 Apr 24.
Tumor metastasis is considered a major cause of cancer-related human mortalities. However, it still remains a formidable challenge in clinics. Herein, a bioinspired multivalent nanoplatform for the highly effective treatment of the metastatic melanoma is reported. The versatile nanoplatform is designed by integrating indocyanine green and a chemotherapeutic drug (7-ethyl-10-hydroxycamptothecin) into phenylboronic acid (PBA)-functionalized peptide nanotubes (termed as I/S-PPNTs). I/S-PPNTs precisely target tumor cells through multivalent interaction between PBA and overexpressed sialic acid on the tumor surface in order to achieve imaging-guided combination therapy. It is demonstrated that I/S-PPNTs are efficiently internalized by the B16-F10 melanoma cells in vitro in a PBA grafting density-dependent manner. It is further shown that I/S-PPNTs specifically accumulate and deeply penetrate into both the subcutaneous and lung metastatic B16-F10 melanoma tumors. More importantly, I/S-PPNT-mediated combination chemo- and photodynamic therapy efficiently eradicates tumor and suppresses the lung metastasis of B16-F10 melanoma in an immunocompetent C57BL/6 mouse model. The results highlight the promising potential of the multivalent peptide nanotubes for active tumor targeting and imaging-guided cancer therapy.
肿瘤转移被认为是导致人类癌症死亡的主要原因。然而,在临床上这仍然是一个巨大的挑战。在此,报道了一种仿生多价纳米平台,用于高效治疗转移性黑色素瘤。该多功能纳米平台通过将吲哚菁绿和化疗药物(7-乙基-10-羟基喜树碱)整合到苯硼酸(PBA)功能化肽纳米管中(称为 I/S-PPNTs)设计而成。I/S-PPNTs 通过 PBA 与肿瘤表面过度表达的唾液酸之间的多价相互作用,精确靶向肿瘤细胞,以实现成像引导的联合治疗。结果表明,I/S-PPNTs 能够以 PBA 接枝密度依赖的方式有效地被体外 B16-F10 黑色素瘤细胞内化。进一步表明,I/S-PPNTs 特异性地积累并深入穿透皮下和肺转移性 B16-F10 黑色素瘤肿瘤。更重要的是,I/S-PPNT 介导的联合化疗和光动力治疗能够有效地消除肿瘤,并抑制免疫功能正常的 C57BL/6 小鼠模型中的 B16-F10 黑色素瘤肺转移。这些结果突出了多价肽纳米管在主动肿瘤靶向和成像引导癌症治疗方面的巨大潜力。