Knoll Lukas, Breuer Lutz, Bach Martin
Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Germany.
Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Germany.
Sci Total Environ. 2019 Jun 10;668:1317-1327. doi: 10.1016/j.scitotenv.2019.03.045. Epub 2019 Mar 6.
Reducing nitrogen inputs, in particular nitrate, to groundwater is becoming increasingly important to fulfil requirements of the European Water Framework Directive. When developing management plans for mitigation measures at larger scales, complex hydro-biogeochemical models reach their limits due to data availability and spatial discretization. To circumvent this problem, the spatial distribution of nitrate concentration in groundwater is estimated using a parsimonious GIS-based statistical approach. Point nitrate concentrations and spatial environmental data as predictors are used to train statistical models. In order to compile the spatial predictors with the respective monitoring sites, different designs of contributing areas (buffer zones) and their effects on the performance of different statistical models are investigated. Multiple Linear Regression (MLR), Classification and Regression Trees (CART), Random Forest (RF) and Boosted Regression Trees (BRT) are compared in terms of the predictive performance of each model according to various objective functions. We determine the most influential spatial predictors used in the respective models. After training the models with a subset of the data, we then predict the spatial nitrate distribution in groundwater for the entire federal state of Hesse, Germany on a 1 × 1 km grid by only the spatial environmental data. The Random Forest model outperforms the other models (R = 0.54), relying on hydrogeological units, the percentage of arable land and the nitrogen balance as the three most influencing predictors based on a 1000 m circular contributing area. The use of exclusively spatial available predictors is a big step forward in the prediction of nitrate in groundwater on regional scale.
减少进入地下水的氮输入,尤其是硝酸盐,对于满足欧洲水框架指令的要求变得越来越重要。在制定更大尺度的缓解措施管理计划时,由于数据可用性和空间离散化,复杂的水文生物地球化学模型达到了其极限。为了解决这个问题,使用一种基于地理信息系统(GIS)的简约统计方法来估计地下水中硝酸盐浓度的空间分布。将硝酸盐点浓度和空间环境数据作为预测变量来训练统计模型。为了将空间预测变量与相应的监测站点进行匹配,研究了不同的贡献区域(缓冲区)设计及其对不同统计模型性能的影响。根据各种目标函数,对多元线性回归(MLR)、分类与回归树(CART)、随机森林(RF)和提升回归树(BRT)这几种模型的预测性能进行了比较。我们确定了各模型中最具影响力的空间预测变量。在用一部分数据训练模型之后,我们仅通过空间环境数据在1×1千米的网格上预测德国黑森州整个联邦州地下水中硝酸盐的空间分布。随机森林模型的表现优于其他模型(R = 0.54),基于1000米的圆形贡献区域,该模型依赖水文地质单元、耕地百分比和氮平衡作为三个最具影响力的预测变量。仅使用空间可用的预测变量在区域尺度上预测地下水中的硝酸盐方面向前迈出了一大步。