Suppr超能文献

基于公平性指标的低密度签名OFDM底层认知无线电网络中的无线资源分配

Radio Resource Allocation with The Fairness Metric for Low Density Signature OFDM in Underlay Cognitive Radio Networks.

作者信息

Meylani Linda, Kurniawan Adit, Arifianto M Sigit

机构信息

School of Electrical Engineering and Informatics, Bandung Institute of Technology, Jl. Ganesha No. 10, Bandung 40132, Indonesia.

School of Electrical Engineering, Telkom University, Jl. Telekomunikasi No. 1, Bandung 40257, Indonesia.

出版信息

Sensors (Basel). 2019 Apr 23;19(8):1921. doi: 10.3390/s19081921.

Abstract

Low density signature orthogonal frequency division multiplexing (LDS-OFDM), one type of non-orthogonal multiple access (NOMA), is a special case of multi-carrier code division multiple access (MC-CDMA). In LDS-OFDM, each user is allowed to spread its symbols in a small set of subcarriers, and there is only a small group of users that are permitted to share the same subcarrier. In this paper, we study the resource allocation for LDS-OFDM as the multiple access model in cognitive radio networks. In our scheme, SUs are allocated to certain d v subcarriers based on minimum interference or higher SINR in each subcarrier. To overcome the problem where SUs were allocated less than the d v subcarriers, we propose interference limit-based resource allocation with the fairness metric (ILRA-FM). Simulation results show that, compared to the ILRA algorithm, the ILRA-FM algorithm has a lower outage probability and higher fairness metric value and also a higher throughput fairness index.

摘要

低密度签名正交频分复用(LDS-OFDM)是非正交多址接入(NOMA)的一种类型,是多载波码分多址接入(MC-CDMA)的一种特殊情况。在LDS-OFDM中,允许每个用户在一小部分子载波上扩展其符号,并且只允许一小群用户共享相同的子载波。在本文中,我们研究了作为认知无线电网络中的多址接入模型的LDS-OFDM的资源分配。在我们的方案中,基于每个子载波中的最小干扰或更高的信干噪比,将次用户(SUs)分配到特定的dv个子载波。为了克服次用户被分配的子载波少于dv个的问题,我们提出了基于干扰限制的具有公平性度量的资源分配(ILRA-FM)。仿真结果表明,与ILRA算法相比,ILRA-FM算法具有更低的中断概率、更高的公平性度量值以及更高的吞吐量公平性指数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8d/6514839/0da03d0060e4/sensors-19-01921-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验