Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261.
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9257-9262. doi: 10.1073/pnas.1901235116. Epub 2019 Apr 24.
Biological species routinely collaborate for their mutual benefit or compete for available resources, thereby displaying dynamic behavior that is challenging to replicate in synthetic systems. Here we use computational modeling to design microscopic, chemically active sheets and self-propelled particles encompassing the appropriate synergistic interactions to exhibit bioinspired feeding, fleeing, and fighting. This design couples two different mechanisms for chemically generating motion in fluid-filled microchambers: solutal buoyancy and diffusiophoresis. Catalyst-coated sheets, which resemble crabs with four distinct claws, convert reactants in solution into products and thereby create local variations in the density and chemical composition of the fluid. Via the solutal buoyancy mechanism, the density variations generate fluid flows, which modify the shape and motility of the crabs. Concomitantly, the chemical variations propel the motion of the particles via diffusiophoresis, and thus, the crabs' and particles' motion becomes highly interconnected. For crabs with restricted lateral mobility, these two mechanisms can be modulated to either drive a crab to catch and appear to feed on all of the particles or enable the particles to flee from this sheet. Moreover, by adjusting the sheet's size and the catalytic coating, two crabs can compete and fight over the motile, diffusiophoretic particles. Alternatively, the crabs can temporally share resources by shuttling the particles back and forth between themselves. With completely mobile sheets, four crabs can collaborate to perform a function that one alone cannot accomplish. These findings provide design rules for creating chemically driven soft robotic sheets that significantly expand the functionality of microfluidic devices.
生物物种经常为了共同利益而合作,或者为了争夺可用资源而竞争,从而表现出动态行为,这很难在合成系统中复制。在这里,我们使用计算建模来设计微观、化学活性的薄片和自推进粒子,这些薄片和粒子包含适当的协同相互作用,以表现出受生物启发的进食、逃离和战斗行为。这种设计结合了两种在充满流体的微室中产生运动的不同机制:溶质浮力和扩散泳。涂有催化剂的薄片类似于有四个不同爪子的螃蟹,它们将溶液中的反应物转化为产物,从而在流体的密度和化学成分上产生局部变化。通过溶质浮力机制,密度变化产生流体流动,从而改变螃蟹的形状和运动。同时,化学变化通过扩散泳推动粒子的运动,因此,螃蟹和粒子的运动变得高度相互关联。对于横向移动能力受限的螃蟹,这两种机制可以被调节,要么驱动螃蟹去捕捉并似乎吃掉所有的粒子,要么使粒子能够逃离这种薄片。此外,通过调整薄片的尺寸和催化涂层,可以使两个螃蟹竞争并争夺运动的扩散泳粒子。或者,螃蟹可以通过在它们之间来回穿梭粒子来暂时共享资源。对于完全可移动的薄片,四个螃蟹可以合作执行一个单独的螃蟹无法完成的功能。这些发现为创建受化学驱动的软机器人薄片提供了设计规则,这些薄片显著扩展了微流控设备的功能。