Suppr超能文献

创伤性脑损伤的半颅脑切开术:用于脑机接口的高伽马活动研究的无创平台。

Hemicraniectomy in Traumatic Brain Injury: A Noninvasive Platform to Investigate High Gamma Activity for Brain Machine Interfaces.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 Jul;27(7):1467-1472. doi: 10.1109/TNSRE.2019.2912298. Epub 2019 Apr 23.

Abstract

Brain-machine interfaces (BMIs) translate brain signals into control signals for an external device, such as a computer cursor or robotic limb. These signals can be obtained either noninvasively or invasively. Invasive recordings, using electrocorticography (ECoG) or intracortical microelectrodes, provide higher bandwidth and more informative signals. Rehabilitative BMIs, which aim to drive plasticity in the brain to enhance recovery after brain injury, have almost exclusively used non-invasive recordings, such electroencephalography (EEG) or magnetoencephalography (MEG), which have limited bandwidth and information content. Invasive recordings provide more information and spatiotemporal resolution, but do incur risk, and thus are not usually investigated in people with stroke or traumatic brain injury (TBI). Here, in this paper, we describe a new BMI paradigm to investigate the use of higher frequency signals in brain-injured subjects without incurring significant risk. We recorded EEG in TBI subjects who required hemicraniectomies (removal of a part of the skull). EEG over the hemicraniectomy (hEEG) contained substantial information in the high gamma frequency range (65-115 Hz). Using this information, we decoded continuous finger flexion force with moderate to high accuracy (variance accounted for 0.06 to 0.52), which at best approaches that using epidural signals. These results indicate that people with hemicraniectomies can provide a useful resource for developing BMI therapies for the treatment of brain injury.

摘要

脑机接口(BMI)将脑信号转换为外部设备(如计算机光标或机械臂)的控制信号。这些信号可以通过非侵入性或侵入性方式获得。侵入性记录,使用脑电图(EEG)或皮质内微电极,提供更高的带宽和更具信息量的信号。旨在促进大脑可塑性以增强脑损伤后恢复的康复性 BMI 几乎完全使用非侵入性记录,如脑电图(EEG)或脑磁图(MEG),这些记录具有有限的带宽和信息量。侵入性记录提供了更多的信息和时空分辨率,但确实存在风险,因此通常不会在中风或创伤性脑损伤(TBI)患者中进行研究。在这里,我们在本文中描述了一种新的 BMI 范式,用于研究在不承担重大风险的情况下在脑损伤患者中使用更高频率的信号。我们在需要进行半颅骨切除术(切除部分颅骨)的 TBI 患者中记录 EEG。半颅骨切除术(hEEG)中的 EEG 在高伽马频带(65-115 Hz)中包含大量信息。使用这些信息,我们以中等至较高的精度解码连续手指弯曲力(方差解释了 0.06 到 0.52),这与使用硬膜外信号的最佳效果接近。这些结果表明,进行半颅骨切除术的人可以为开发 BMI 疗法治疗脑损伤提供有用的资源。

相似文献

1
Hemicraniectomy in Traumatic Brain Injury: A Noninvasive Platform to Investigate High Gamma Activity for Brain Machine Interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jul;27(7):1467-1472. doi: 10.1109/TNSRE.2019.2912298. Epub 2019 Apr 23.
4
Hand movement direction decoded from MEG and EEG.
J Neurosci. 2008 Jan 23;28(4):1000-8. doi: 10.1523/JNEUROSCI.5171-07.2008.
5
A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm.
PLoS One. 2014 Nov 12;9(11):e112352. doi: 10.1371/journal.pone.0112352. eCollection 2014.
6
Effect of Bone Flap Surface Area on Outcomes in Decompressive Hemicraniectomy for Traumatic Brain Injury.
World Neurosurg. 2018 Nov;119:e922-e927. doi: 10.1016/j.wneu.2018.08.005. Epub 2018 Aug 9.
7
Extracting kinetic information from human motor cortical signals.
Neuroimage. 2014 Nov 1;101:695-703. doi: 10.1016/j.neuroimage.2014.07.049. Epub 2014 Aug 2.
9
Volume of Brain Herniation After Decompressive Craniectomy in Patients with Traumatic Brain Injury.
World Neurosurg. 2018 Oct;118:e414-e421. doi: 10.1016/j.wneu.2018.06.204. Epub 2018 Jul 2.
10
Classification of hand movement direction based on EEG high-gamma activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6509-12. doi: 10.1109/EMBC.2014.6945119.

引用本文的文献

2
Non-Invasive Systems Application in Traumatic Brain Injury Rehabilitation.
Brain Sci. 2023 Nov 15;13(11):1594. doi: 10.3390/brainsci13111594.
4
Development and Application of Medicine-Engineering Integration in the Rehabilitation of Traumatic Brain Injury.
Biomed Res Int. 2021 Jun 12;2021:9962905. doi: 10.1155/2021/9962905. eCollection 2021.
7
The Representation of Finger Movement and Force in Human Motor and Premotor Cortices.
eNeuro. 2020 Aug 17;7(4). doi: 10.1523/ENEURO.0063-20.2020. Print 2020 Jul/Aug.

本文引用的文献

1
Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations.
Neuroscientist. 2019 Apr;25(2):139-154. doi: 10.1177/1073858418775355. Epub 2018 May 17.
2
Physiological properties of brain-machine interface input signals.
J Neurophysiol. 2017 Aug 1;118(2):1329-1343. doi: 10.1152/jn.00070.2017. Epub 2017 Jun 14.
3
Characterization of electrocorticogram high-gamma signal in response to varying upper extremity movement velocity.
Brain Struct Funct. 2017 Nov;222(8):3705-3748. doi: 10.1007/s00429-017-1429-8. Epub 2017 May 18.
4
Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS.
N Engl J Med. 2016 Nov 24;375(21):2060-2066. doi: 10.1056/NEJMoa1608085. Epub 2016 Nov 12.
5
Continuous decoding of human grasp kinematics using epidural and subdural signals.
J Neural Eng. 2017 Feb;14(1):016005. doi: 10.1088/1741-2560/14/1/016005. Epub 2016 Nov 30.
6
Intracortical microstimulation of human somatosensory cortex.
Sci Transl Med. 2016 Oct 19;8(361):361ra141. doi: 10.1126/scitranslmed.aaf8083. Epub 2016 Oct 13.
7
Brain-machine interfaces in neurorehabilitation of stroke.
Neurobiol Dis. 2015 Nov;83:172-9. doi: 10.1016/j.nbd.2014.11.025. Epub 2014 Dec 7.
8
Neural Point-and-Click Communication by a Person With Incomplete Locked-In Syndrome.
Neurorehabil Neural Repair. 2015 Jun;29(5):462-71. doi: 10.1177/1545968314554624. Epub 2014 Nov 10.
9
Extracting kinetic information from human motor cortical signals.
Neuroimage. 2014 Nov 1;101:695-703. doi: 10.1016/j.neuroimage.2014.07.049. Epub 2014 Aug 2.
10
From assistance towards restoration with epidural brain-computer interfacing.
Restor Neurol Neurosci. 2014;32(4):517-25. doi: 10.3233/RNN-140387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验