IEEE Trans Neural Syst Rehabil Eng. 2019 Jul;27(7):1467-1472. doi: 10.1109/TNSRE.2019.2912298. Epub 2019 Apr 23.
Brain-machine interfaces (BMIs) translate brain signals into control signals for an external device, such as a computer cursor or robotic limb. These signals can be obtained either noninvasively or invasively. Invasive recordings, using electrocorticography (ECoG) or intracortical microelectrodes, provide higher bandwidth and more informative signals. Rehabilitative BMIs, which aim to drive plasticity in the brain to enhance recovery after brain injury, have almost exclusively used non-invasive recordings, such electroencephalography (EEG) or magnetoencephalography (MEG), which have limited bandwidth and information content. Invasive recordings provide more information and spatiotemporal resolution, but do incur risk, and thus are not usually investigated in people with stroke or traumatic brain injury (TBI). Here, in this paper, we describe a new BMI paradigm to investigate the use of higher frequency signals in brain-injured subjects without incurring significant risk. We recorded EEG in TBI subjects who required hemicraniectomies (removal of a part of the skull). EEG over the hemicraniectomy (hEEG) contained substantial information in the high gamma frequency range (65-115 Hz). Using this information, we decoded continuous finger flexion force with moderate to high accuracy (variance accounted for 0.06 to 0.52), which at best approaches that using epidural signals. These results indicate that people with hemicraniectomies can provide a useful resource for developing BMI therapies for the treatment of brain injury.
脑机接口(BMI)将脑信号转换为外部设备(如计算机光标或机械臂)的控制信号。这些信号可以通过非侵入性或侵入性方式获得。侵入性记录,使用脑电图(EEG)或皮质内微电极,提供更高的带宽和更具信息量的信号。旨在促进大脑可塑性以增强脑损伤后恢复的康复性 BMI 几乎完全使用非侵入性记录,如脑电图(EEG)或脑磁图(MEG),这些记录具有有限的带宽和信息量。侵入性记录提供了更多的信息和时空分辨率,但确实存在风险,因此通常不会在中风或创伤性脑损伤(TBI)患者中进行研究。在这里,我们在本文中描述了一种新的 BMI 范式,用于研究在不承担重大风险的情况下在脑损伤患者中使用更高频率的信号。我们在需要进行半颅骨切除术(切除部分颅骨)的 TBI 患者中记录 EEG。半颅骨切除术(hEEG)中的 EEG 在高伽马频带(65-115 Hz)中包含大量信息。使用这些信息,我们以中等至较高的精度解码连续手指弯曲力(方差解释了 0.06 到 0.52),这与使用硬膜外信号的最佳效果接近。这些结果表明,进行半颅骨切除术的人可以为开发 BMI 疗法治疗脑损伤提供有用的资源。