Suppr超能文献

宿主特异性 NS5 泛素化决定黄热病病毒的嗜性。

Host-Specific NS5 Ubiquitination Determines Yellow Fever Virus Tropism.

机构信息

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, New York, USA.

出版信息

J Virol. 2019 Jun 28;93(14). doi: 10.1128/JVI.00151-19. Print 2019 Jul 15.

Abstract

The recent yellow fever virus (YFV) epidemic in Brazil in 2017 and Zika virus (ZIKV) epidemic in 2015 serve to remind us of the importance of flaviviruses as emerging human pathogens. With the current global flavivirus threat, there is an urgent need for antivirals and vaccines to curb the spread of these viruses. However, the lack of suitable animal models limits the research questions that can be answered. A common trait of all flaviviruses studied thus far is their ability to antagonize interferon (IFN) signaling so as to enhance viral replication and dissemination. Previously, we reported that YFV NS5 requires the presence of type I IFN (IFN-α/β) for its engagement with human signal transducer and activator of transcription 2 (hSTAT2). In this manuscript, we report that like the NS5 proteins of ZIKV and dengue virus (DENV), YFV NS5 protein is able to bind hSTAT2 but not murine STAT2 (mSTAT2). Contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, replacing mSTAT2 with hSTAT2 cannot rescue the YFV NS5-STAT2 interaction, as YFV NS5 is also unable to interact with hSTAT2 in murine cells. We show that the IFN-α/β-dependent ubiquitination of YFV NS5 that is required for STAT2 binding in human cells is absent in murine cells. In addition, we demonstrate that mSTAT2 restricts YFV replication These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses. Flaviviruses such as yellow fever virus (YFV), Zika virus (ZIKV), and dengue virus (DENV) are important human pathogens. A common flavivirus trait is the antagonism of interferon (IFN) signaling to enhance viral replication and spread. We report that like ZIKV NS5 and DENV NS5, YFV NS5 binds human STAT2 (hSTAT2) but not mouse STAT2 (mSTAT2), a type I IFN (IFN-α/β) pathway component. Additionally, we show that contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, YFV NS5 is unable to interact with hSTAT2 in murine cells. We demonstrate that mSTAT2 restricts YFV replication in mice and that this correlates with a lack of IFN-α/β-induced YFV NS5 ubiquitination in murine cells. The lack of suitable animal models limits flavivirus pathogenesis, vaccine, and drug research. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses.

摘要

最近 2017 年巴西的黄热病病毒(YFV)疫情和 2015 年的寨卡病毒(ZIKV)疫情提醒我们,黄病毒作为新出现的人类病原体的重要性。鉴于当前全球黄病毒的威胁,迫切需要抗病毒药物和疫苗来遏制这些病毒的传播。然而,缺乏合适的动物模型限制了可以回答的研究问题。迄今为止研究的所有黄病毒的一个共同特征是它们能够拮抗干扰素(IFN)信号,从而增强病毒复制和传播。此前,我们报道 YFV NS5 需要 I 型 IFN(IFN-α/β)才能与人类信号转导和转录激活因子 2(hSTAT2)结合。在本手稿中,我们报告说,与 ZIKV 和登革热病毒(DENV)的 NS5 蛋白一样,YFV NS5 蛋白能够结合 hSTAT2,但不能结合鼠 STAT2(mSTAT2)。与 ZIKV NS5 和 DENV NS5 所证明的情况相反,用 hSTAT2 替代 mSTAT2 不能挽救 YFV NS5-STAT2 相互作用,因为 YFV NS5 也不能与鼠细胞中的 hSTAT2 相互作用。我们表明,在人细胞中需要用于 STAT2 结合的 IFN-α/β依赖性 YFV NS5 泛素化在鼠细胞中不存在。此外,我们证明 mSTAT2 限制了 YFV 的复制。这些数据进一步推动了免疫活性小鼠模型的开发,该模型可以作为多种黄病毒的疾病模型。黄病毒,如黄热病病毒(YFV)、寨卡病毒(ZIKV)和登革热病毒(DENV),是重要的人类病原体。黄病毒的一个共同特征是拮抗干扰素(IFN)信号以增强病毒复制和传播。我们报告说,与 ZIKV NS5 和 DENV NS5 一样,YFV NS5 结合人 STAT2(hSTAT2)但不结合鼠 STAT2(mSTAT2),即 I 型 IFN(IFN-α/β)途径成分。此外,我们表明,与 ZIKV NS5 和 DENV NS5 所证明的情况相反,YFV NS5 不能与鼠细胞中的 hSTAT2 相互作用。我们证明 mSTAT2 限制了 YFV 在小鼠中的复制,并且这与在鼠细胞中缺乏 IFN-α/β 诱导的 YFV NS5 泛素化有关。缺乏合适的动物模型限制了黄病毒发病机制、疫苗和药物的研究。这些数据进一步推动了免疫活性小鼠模型的开发,该模型可以作为多种黄病毒的疾病模型。

相似文献

1
Host-Specific NS5 Ubiquitination Determines Yellow Fever Virus Tropism.
J Virol. 2019 Jun 28;93(14). doi: 10.1128/JVI.00151-19. Print 2019 Jul 15.
2
The Role of NS5 Protein in Determination of Host Cell Range for Yellow Fever Virus.
DNA Cell Biol. 2019 Dec;38(12):1414-1417. doi: 10.1089/dna.2019.5115. Epub 2019 Oct 18.
3
NS5-independent Ablation of STAT2 by Zika virus to antagonize interferon signalling.
Emerg Microbes Infect. 2021 Dec;10(1):1609-1625. doi: 10.1080/22221751.2021.1964384.
4
Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling.
Cell Host Microbe. 2016 Jun 8;19(6):882-90. doi: 10.1016/j.chom.2016.05.009. Epub 2016 May 19.
5
The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon.
Cell Host Microbe. 2014 Sep 10;16(3):314-327. doi: 10.1016/j.chom.2014.07.015.
6
A conformational selection mechanism of flavivirus NS5 for species-specific STAT2 inhibition.
Commun Biol. 2024 Jan 10;7(1):76. doi: 10.1038/s42003-024-05768-8.
7
Structural basis for STAT2 suppression by flavivirus NS5.
Nat Struct Mol Biol. 2020 Oct;27(10):875-885. doi: 10.1038/s41594-020-0472-y. Epub 2020 Aug 10.
9
Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2403235121. doi: 10.1073/pnas.2403235121. Epub 2024 Aug 15.
10
Selective Activation of Type II Interferon Signaling by Zika Virus NS5 Protein.
J Virol. 2017 Jun 26;91(14). doi: 10.1128/JVI.00163-17. Print 2017 Jul 15.

引用本文的文献

1
Pathogenesis and clinical management of arboviral diseases.
World J Virol. 2025 Mar 25;14(1):100489. doi: 10.5501/wjv.v14.i1.100489.
4
Functional Roles and Host Interactions of Non-Structural Proteins During Replication.
Pathogens. 2025 Feb 12;14(2):184. doi: 10.3390/pathogens14020184.
5
Balancing acts: The posttranslational modification tightrope of flavivirus replication.
PLoS Pathog. 2024 Oct 28;20(10):e1012626. doi: 10.1371/journal.ppat.1012626. eCollection 2024 Oct.
6
Evolution of STAT2 resistance to flavivirus NS5 occurred multiple times despite genetic constraints.
Nat Commun. 2024 Jun 26;15(1):5426. doi: 10.1038/s41467-024-49758-0.
7
CMPK2 restricts Zika virus replication by inhibiting viral translation.
PLoS Pathog. 2023 Apr 19;19(4):e1011286. doi: 10.1371/journal.ppat.1011286. eCollection 2023 Apr.
8
African swine fever virus ubiquitin-conjugating enzyme pI215L inhibits IFN-I signaling pathway through STAT2 degradation.
Front Microbiol. 2023 Jan 13;13:1081035. doi: 10.3389/fmicb.2022.1081035. eCollection 2022.

本文引用的文献

1
Genomic and epidemiological monitoring of yellow fever virus transmission potential.
Science. 2018 Aug 31;361(6405):894-899. doi: 10.1126/science.aat7115. Epub 2018 Aug 23.
2
An Immunocompetent Mouse Model of Zika Virus Infection.
Cell Host Microbe. 2018 May 9;23(5):672-685.e6. doi: 10.1016/j.chom.2018.04.003.
3
Antagonism of type I interferon by flaviviruses.
Biochem Biophys Res Commun. 2017 Oct 28;492(4):587-596. doi: 10.1016/j.bbrc.2017.05.146. Epub 2017 May 31.
4
Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling.
Cell Host Microbe. 2016 Jun 8;19(6):882-90. doi: 10.1016/j.chom.2016.05.009. Epub 2016 May 19.
5
Yellow fever vaccine: worthy friend or stealthy foe?
Expert Rev Vaccines. 2016 Jun;15(6):681-91. doi: 10.1080/14760584.2016.1180250.
6
Fears rise over yellow fever's next move.
Nature. 2016 Apr 14;532(7598):155-6. doi: 10.1038/532155a.
7
Serious adverse events associated with yellow fever vaccine.
Hum Vaccin Immunother. 2015;11(9):2183-7. doi: 10.1080/21645515.2015.1022700.
8
The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon.
Cell Host Microbe. 2014 Sep 10;16(3):314-327. doi: 10.1016/j.chom.2014.07.015.
9
Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data.
PLoS Med. 2014 May 6;11(5):e1001638. doi: 10.1371/journal.pmed.1001638. eCollection 2014 May.
10
Dynamic viral dissemination in mice infected with yellow fever virus strain 17D.
J Virol. 2013 Nov;87(22):12392-7. doi: 10.1128/JVI.02149-13. Epub 2013 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验