Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Neuropharmacology. 2019 Dec 15;161:107623. doi: 10.1016/j.neuropharm.2019.04.029. Epub 2019 Apr 29.
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
谷氨酸的神经摄取是由溶质转运蛋白 SLC1A 家族的结构相关成员执行的:GLAST/EAAT1、GLT-1/EAAT2、EAAC1/EAAT3、EAAT4 和 ASCT2。这些质膜蛋白确保了谷氨酸、天冬氨酸和一些中性氨基酸(包括谷氨酰胺和半胱氨酸)的供应,用于合成、能量和信号目的,而谷氨酸从突触间隙的有效清除则调节了兴奋性神经传递并防止了谷氨酸毒性。谷氨酸转运体(GluTs)也具有受体样特性,可以直接启动信号转导。GluTs 与其他谷氨酸信号转导、转运和代谢分子(例如,谷氨酰胺转运体 SNAT3 和 ASCT2、谷氨酰胺合成酶、NMDA 受体、突触小泡)以及为谷氨酸跨膜转运提供动力的细胞机制(例如,离子梯度产生的 Na/K-ATP 酶、糖酵解酶、线粒体膜和基质蛋白、葡萄糖转运体)物理连接。我们将这个超分子功能组装体命名为“谷氨酸体”。由于脊髓中的伤害性信号主要是谷氨酸能性质的,因此 GluTs 在慢性疼痛的分子病理学中起着重要作用。GluTs 的下调通常先于或与疼痛敏化的发展同时发生。脊髓 GluTs 的药理学抑制或基因敲低可引起/加重疼痛,而通过病毒基因转移增强 GluTs 的表达则可以减轻慢性疼痛。因此,GluTs 的功能上调正在成为治疗慢性疼痛的一种有前途的药物治疗方法。最近引入了一些新型 GluTs 的正药理学调节剂,包括嘧啶衍生物和β-内酰胺类。然而,基于这一原理设计和开发新的镇痛药需要更精确地了解谷氨酸转运系统在伤害性回路中正常或异常功能的分子机制。本文是题为“神经递质转运体特刊”的一部分。