Suppr超能文献

不同序列基序查找算法综述。

Review of Different Sequence Motif Finding Algorithms.

作者信息

Hashim Fatma A, Mabrouk Mai S, Al-Atabany Walid

机构信息

Department of Biomedical Engineering, Helwan University, Egypt.

Department of Biomedical Engineering, Misr University for Science and Technology (MUST), Egypt.

出版信息

Avicenna J Med Biotechnol. 2019 Apr-Jun;11(2):130-148.

Abstract

The DNA motif discovery is a primary step in many systems for studying gene function. Motif discovery plays a vital role in identification of Transcription Factor Binding Sites (TFBSs) that help in learning the mechanisms for regulation of gene expression. Over the past decades, different algorithms were used to design fast and accurate motif discovery tools. These algorithms are generally classified into consensus or probabilistic approaches that many of them are time-consuming and easily trapped in a local optimum. Nature-inspired algorithms and many of combinatorial algorithms are recently proposed to overcome these problems. This paper presents a general classification of motif discovery algorithms with new sub-categories that facilitate building a successful motif discovery algorithm. It also presents a summary of comparison between them.

摘要

DNA 基序发现是许多研究基因功能系统中的首要步骤。基序发现在识别转录因子结合位点(TFBSs)中起着至关重要的作用,这有助于了解基因表达调控机制。在过去几十年中,人们使用了不同的算法来设计快速且准确的基序发现工具。这些算法通常分为一致性或概率性方法,其中许多算法耗时且容易陷入局部最优。最近提出了受自然启发的算法和许多组合算法来克服这些问题。本文提出了一种基序发现算法的通用分类,包括新的子类别,这有助于构建成功的基序发现算法。它还给出了它们之间的比较总结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6232/6490410/00861eef2274/AJMB-11-130-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验