Suppr超能文献

胎儿生长速度和早孕期母体生物标志物能否改善小于胎龄儿和不良新生儿结局的预测?

Can Fetal Growth Velocity and First Trimester Maternal Biomarkers Improve the Prediction of Small-for-Gestational Age and Adverse Neonatal Outcome?

机构信息

Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands,

Central Diagnostic Laboratory, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.

出版信息

Fetal Diagn Ther. 2019;46(4):274-284. doi: 10.1159/000499580. Epub 2019 May 8.

Abstract

BACKGROUND AND OBJECTIVES

The aim of this study was to evaluate the value of adding fetal growth velocity and first trimester maternal biomarkers to baseline screening, for the prediction of small-for-gestational age (SGA) and adverse neonatal outcomes.

METHOD

A retrospective cohort study was conducted of singleton pregnancies in the Maastricht University Medical Centre between 2012 and 2016. The biomarkers PAPP-A, β-hCG, PlGF, and sFlt-1 were measured at 11-13 weeks of gestational age (GA) and two fetal growth scans were performed (18-22 and 30-34 weeks of GA). Differences in biomarkers and growth velocities were compared between appropriate-for-gestational age (AGA; birth weight percentile 10-90) and SGA (birth weight percentile <10). Combinations of the biomarkers and fetal growth velocity were added to baseline screening for the prediction of SGA and adverse neonatal outcome.

RESULTS

We included 296 singleton pregnancies. Compared to AGA (n = 251), SGA neonates (n = 45) had significantly lower growth velocities in the abdominal circumference (mm/week): 10.1 ± 0.98 versus 10.8 ± 0.98, p = 0.001. Compared with AGA, the SGA neonates had higher sFlt-1 multiples of the median (MoM): 0.89 (0.55) versus 0.76 (0.44), p = 0.023, and a higher sFlt-1/PlGF MoM ratio: 1.09 (1.03) versus 0.90 (0.64), p = 0.027. For a 15% false-positive rate, the prediction of SGA neonates increased from 44.8% for the baseline screening model to 56.5% after the addition of fetal growth velocities, and to 73.9% after the further addition of maternal biomarkers (PPV 9.6%, NPV 82.4%). The corresponding AUC for the three models were 0.722, 0.804, and 0.839, respectively. In addition, AGA neonates with reduced fetal growth velocity had more adverse neonatal outcomes compared to the AGA reference group (12.4 vs. 3.9%, p = 0.013).

CONCLUSIONS

Combining fetal growth velocity with first trimester biomarkers resulted in a better prediction of SGA compared to baseline screening parameters alone. This approach could possibly result in reduced adverse neonatal outcomes in neonates, who are at a potential risk due to late mild placental dysfunction.

摘要

背景与目的

本研究旨在评估在基线筛查中加入胎儿生长速度和早孕期母源性生物标志物,对预测小于胎龄儿(SGA)和不良新生儿结局的价值。

方法

对 2012 年至 2016 年期间在马斯特里赫特大学医学中心进行的单胎妊娠进行回顾性队列研究。在 11-13 孕周(GA)时测量 PAPP-A、β-hCG、PlGF 和 sFlt-1 等生物标志物,并进行两次胎儿生长扫描(18-22 周和 30-34 周 GA)。将适宜胎龄儿(AGA;出生体重百分位 10-90)与 SGA(出生体重百分位<10)的生物标志物和生长速度进行比较。将生物标志物和胎儿生长速度的组合添加到基线筛查中,以预测 SGA 和不良新生儿结局。

结果

我们纳入了 296 例单胎妊娠。与 AGA 新生儿(n=251)相比,SGA 新生儿(n=45)的腹围生长速度明显较慢(mm/周):10.1±0.98 与 10.8±0.98,p=0.001。与 AGA 相比,SGA 新生儿的 sFlt-1 中位数倍数(MoM)更高:0.89(0.55)与 0.76(0.44),p=0.023,sFlt-1/PlGF MoM 比值更高:1.09(1.03)与 0.90(0.64),p=0.027。假阳性率为 15%时,SGA 新生儿的预测率从基线筛查模型的 44.8%增加到添加胎儿生长速度后的 56.5%,再增加到添加母源性生物标志物后的 73.9%(PPV 9.6%,NPV 82.4%)。三个模型的 AUC 分别为 0.722、0.804 和 0.839。此外,与 AGA 参考组相比,生长速度降低的 AGA 新生儿的不良新生儿结局更多(12.4%与 3.9%,p=0.013)。

结论

与单独使用基线筛查参数相比,将胎儿生长速度与早孕期生物标志物相结合,可更好地预测 SGA。这种方法可能会减少由于晚期轻度胎盘功能障碍而处于潜在风险的新生儿的不良新生儿结局。

相似文献

3
Prediction of small for gestational age neonates: screening by maternal factors, fetal biometry, and biomarkers at 35-37 weeks' gestation.
Am J Obstet Gynecol. 2019 May;220(5):486.e1-486.e11. doi: 10.1016/j.ajog.2019.01.227. Epub 2019 Jan 29.
4
Prediction of small-for-gestational-age neonates: screening by maternal serum biochemical markers at 19-24 weeks.
Ultrasound Obstet Gynecol. 2015 Sep;46(3):341-9. doi: 10.1002/uog.14899. Epub 2015 Aug 6.
6
Prediction of small-for-gestational-age neonates: screening by maternal biochemical markers at 30-34 weeks.
Ultrasound Obstet Gynecol. 2015 Aug;46(2):208-15. doi: 10.1002/uog.14861.
7
Prediction of small-for-gestational-age neonates: screening by biophysical and biochemical markers at 30-34 weeks.
Ultrasound Obstet Gynecol. 2015 Oct;46(4):446-51. doi: 10.1002/uog.14863. Epub 2015 Aug 6.
9
Biomarkers of impaired placentation at 35-37 weeks' gestation in the prediction of adverse perinatal outcome.
Ultrasound Obstet Gynecol. 2019 Jul;54(1):79-86. doi: 10.1002/uog.20346. Epub 2019 Jun 10.

引用本文的文献

1
The value of fetal growth trajectory during pregnancy in predicting small for gestational age neonates at term.
BMC Pregnancy Childbirth. 2025 Apr 10;25(1):423. doi: 10.1186/s12884-025-07518-y.
2
Biomarkers for Diagnosing and Treating Fetal Growth Restriction.
Curr Med Chem. 2024;31(28):4461-4478. doi: 10.2174/0109298673258444231019104656.
5
Early sonographic evaluation of the placenta in cases with IUGR: a pilot study.
Arch Gynecol Obstet. 2020 Aug;302(2):337-343. doi: 10.1007/s00404-020-05601-7. Epub 2020 May 25.

本文引用的文献

2
The sFlt-1/PlGF ratio as a predictor for poor pregnancy and neonatal outcomes.
Pediatr Neonatol. 2017 Dec;58(6):529-533. doi: 10.1016/j.pedneo.2016.10.005. Epub 2017 May 10.
3
Apgar Score Components at 5 Minutes: Risks and Prediction of Neonatal Mortality.
Paediatr Perinat Epidemiol. 2017 Jul;31(4):328-337. doi: 10.1111/ppe.12360. Epub 2017 May 11.
5
Second- to third-trimester longitudinal growth assessment for prediction of small-for-gestational age and late fetal growth restriction.
Ultrasound Obstet Gynecol. 2018 Feb;51(2):219-224. doi: 10.1002/uog.17471. Epub 2018 Jan 8.
6
Strategies for managing transient tachypnoea of the newborn - a systematic review.
J Matern Fetal Neonatal Med. 2017 Jul;30(13):1524-1532. doi: 10.1080/14767058.2016.1193143. Epub 2016 Oct 20.
7
European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2016 Update.
Neonatology. 2017;111(2):107-125. doi: 10.1159/000448985. Epub 2016 Sep 21.
9
Impact of maternal serum levels of Visfatin, AFP, PAPP-A, sFlt-1 and PlGF at 11-13 weeks gestation on small for gestational age births.
J Matern Fetal Neonatal Med. 2017 Mar;30(6):629-634. doi: 10.1080/14767058.2016.1182483. Epub 2016 May 16.
10
First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction.
Ultrasound Obstet Gynecol. 2016 Sep;48(3):340-8. doi: 10.1002/uog.15879.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验