Suppr超能文献

生物传感器-表面等离子体共振:帮助建立新一代 RNA 特异性小分子的策略。

Biosensor-surface plasmon resonance: A strategy to help establish a new generation RNA-specific small molecules.

机构信息

Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA.

Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St SE, Atlanta, GA 30303, USA.

出版信息

Methods. 2019 Sep 1;167:15-27. doi: 10.1016/j.ymeth.2019.05.005. Epub 2019 May 9.

Abstract

Biosensor surface plasmon resonance (SPR) is a highly sensitive technique and is most commonly used to decipher the interactions of biological systems including proteins and nucleic acids. Throughout the years, there have been significant efforts to develop SPR assays for studying protein-protein interactions, protein-DNA interactions, as well as small molecules to target DNAs that are of therapeutic interest. With the explosion of discovery of new RNA structures and functions, it is time to review the applications of SPR to RNA interaction studies, which have actually extended over a long time period. The primary advantage of SPR is its ability to measure affinities and kinetics in real time, along with being a label-free technique and utilizing relatively small quantities of materials. Recently, developments that use SPR to analyze the interactions of different RNA sequences with proteins and small molecules demonstrate the versatility of SPR as a powerful method in the analysis of the structure-function relationships, not only for biological macromolecules but also for potential drug candidates. This chapter will guide the reader through some background material followed by an extensive assay development to dissect the interactions of small molecules and RNA sequences using SPR as the critical method. The protocol includes (i) fundamental concepts of SPR, (ii) experimental design and execution, (iii) the immobilization of RNA using the streptavidin-biotin capturing method, and (iv) affinities and kinetics analyses of the interactions using specific example samples. The chapter also contains useful notes to address situations that might arise during the process. This assay demonstrates SPR as a valuable quantitative method used in the search for potential therapeutic agents that selectively target RNA.

摘要

生物传感器表面等离子体共振 (SPR) 是一种高度灵敏的技术,最常用于破译包括蛋白质和核酸在内的生物系统的相互作用。多年来,人们一直在努力开发 SPR 分析方法来研究蛋白质-蛋白质相互作用、蛋白质-DNA 相互作用以及针对具有治疗意义的 DNA 的小分子。随着新 RNA 结构和功能的发现呈爆炸式增长,现在是时候回顾 SPR 在 RNA 相互作用研究中的应用了,实际上,这一应用已经持续了很长时间。SPR 的主要优势在于它能够实时测量亲和力和动力学,同时还是一种无标记技术,并且只需要相对少量的材料。最近,使用 SPR 分析不同 RNA 序列与蛋白质和小分子相互作用的发展表明,SPR 作为一种强大的方法,在分析结构-功能关系方面具有多功能性,不仅适用于生物大分子,也适用于潜在的药物候选物。本章将引导读者了解一些背景材料,然后进行广泛的分析开发,以使用 SPR 作为关键方法来剖析小分子和 RNA 序列的相互作用。该方案包括 (i) SPR 的基本概念,(ii) 实验设计和执行,(iii) 使用链霉亲和素-生物素捕获方法固定 RNA,以及 (iv) 使用特定示例样本进行相互作用的亲和力和动力学分析。本章还包含有用的注释,以解决在该过程中可能出现的情况。该分析方案展示了 SPR 作为一种有价值的定量方法,用于寻找选择性靶向 RNA 的潜在治疗剂。

相似文献

1
Biosensor-surface plasmon resonance: A strategy to help establish a new generation RNA-specific small molecules.
Methods. 2019 Sep 1;167:15-27. doi: 10.1016/j.ymeth.2019.05.005. Epub 2019 May 9.
2
Protein-Ligand Interactions Using SPR Systems.
Methods Mol Biol. 2013;1008:139-65. doi: 10.1007/978-1-62703-398-5_6.
3
Protein-Protein Interactions: Surface Plasmon Resonance.
Methods Mol Biol. 2017;1615:257-275. doi: 10.1007/978-1-4939-7033-9_21.
4
Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions.
Methods Mol Biol. 2011;764:279-300. doi: 10.1007/978-1-61779-188-8_19.
5
Characterization of Small Molecule-Protein Interactions Using SPR Method.
Methods Mol Biol. 2023;2690:149-159. doi: 10.1007/978-1-0716-3327-4_15.
6
Quantitative Investigation of Protein-Nucleic Acid Interactions by Biosensor Surface Plasmon Resonance.
Methods Mol Biol. 2015;1334:313-32. doi: 10.1007/978-1-4939-2877-4_20.
7
Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions.
Methods Cell Biol. 2008;84:53-77. doi: 10.1016/S0091-679X(07)84003-9.
10
Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt A):43-55. doi: 10.1016/j.bbamem.2013.04.028. Epub 2013 May 9.

引用本文的文献

4
Structure of an RNA G-quadruplex from the West Nile virus genome.
Nat Commun. 2024 Jun 26;15(1):5428. doi: 10.1038/s41467-024-49761-5.
6
RNA-Ligand Interactions Quantified by Surface Plasmon Resonance with Reference Subtraction.
Biochemistry. 2022 Aug 2;61(15):1625-1632. doi: 10.1021/acs.biochem.2c00177. Epub 2022 Jul 8.
7
Quantitative Structure-Activity Relationship (QSAR) Study Predicts Small-Molecule Binding to RNA Structure.
J Med Chem. 2022 May 26;65(10):7262-7277. doi: 10.1021/acs.jmedchem.2c00254. Epub 2022 May 6.
8
G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions.
Pharmaceuticals (Basel). 2021 Aug 5;14(8):769. doi: 10.3390/ph14080769.
9
Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies.
Biosensors (Basel). 2021 Jul 10;11(7):233. doi: 10.3390/bios11070233.
10
Efficient purification and assembly of ribonucleoprotein complex for interaction analysis by MST assay coupled with GaMD simulations.
STAR Protoc. 2021 Feb 3;2(1):100315. doi: 10.1016/j.xpro.2021.100315. eCollection 2021 Mar 19.

本文引用的文献

1
Drugging the RNA World.
Cold Spring Harb Perspect Biol. 2018 Nov 1;10(11):a034769. doi: 10.1101/cshperspect.a034769.
3
Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms.
ACS Chem Biol. 2018 Sep 21;13(9):2708-2718. doi: 10.1021/acschembio.8b00646. Epub 2018 Aug 27.
4
Principles for targeting RNA with drug-like small molecules.
Nat Rev Drug Discov. 2018 Aug;17(8):547-558. doi: 10.1038/nrd.2018.93. Epub 2018 Jul 6.
5
Targeting RNA in mammalian systems with small molecules.
Wiley Interdiscip Rev RNA. 2018 Jul;9(4):e1477. doi: 10.1002/wrna.1477. Epub 2018 May 3.
6
G-quadruplex-binding small molecules ameliorate FTD/ALS pathology and .
EMBO Mol Med. 2018 Jan;10(1):22-31. doi: 10.15252/emmm.201707850.
7
MicroRNA Biosensing with Two-Dimensional Surface Plasmon Resonance Imaging.
Methods Mol Biol. 2017;1571:117-127. doi: 10.1007/978-1-4939-6848-0_8.
8
Precise small-molecule recognition of a toxic CUG RNA repeat expansion.
Nat Chem Biol. 2017 Feb;13(2):188-193. doi: 10.1038/nchembio.2251. Epub 2016 Dec 12.
9
The Emerging Role of RNA as a Therapeutic Target for Small Molecules.
Cell Chem Biol. 2016 Sep 22;23(9):1077-1090. doi: 10.1016/j.chembiol.2016.05.021. Epub 2016 Sep 1.
10
A Ligand That Targets CUG Trinucleotide Repeats.
Chemistry. 2016 Oct 10;22(42):14881-14889. doi: 10.1002/chem.201602741. Epub 2016 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验