Melkonian Erica A., Asuka Edinen, Schury Mark P.
Michigan State University
All Saints University School of Medicine, Dominica.
The brain, eye, and kidney are some of the organs that have glucose as the sole metabolic fuel source. Prolonged fasting or vigorous exercise depletes glycogen stores, making the body switch to de-novo glucose synthesis to maintain blood levels of this monosaccharide. Gluconeogenesis is the process that allows the body to form glucose from non-hexose precursors, particularly glycerol, lactate, pyruvate, propionate, and glucogenic amino acids. Gluconeogenesis essentially reverses glycolysis (see . Gluconeogenesis). Four enzymes facilitate glucose synthesis by this pathway by reversing 3 highly exergonic glycolytic steps, namely, pyruvate carboxylase, phosphoenol pyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase, and glucose-6-phosphatase. However, these enzymes are not present in all cell types. Therefore, gluconeogenesis can only occur in specific tissues. In humans, gluconeogenesis takes place primarily in the liver and, to a lesser extent, the renal cortex. This article discusses gluconeogenesis and its clinical correlates.
大脑、眼睛和肾脏是一些以葡萄糖作为唯一代谢燃料来源的器官。长时间禁食或剧烈运动消耗糖原储备,使身体转向从头合成葡萄糖以维持这种单糖的血液水平。糖异生是身体利用非己糖前体,特别是甘油、乳酸、丙酮酸、丙酸和生糖氨基酸生成葡萄糖的过程。糖异生本质上是糖酵解的逆过程(见糖异生)。四种酶通过逆转3个高能糖酵解步骤促进该途径的葡萄糖合成,即丙酮酸羧化酶、磷酸烯醇式丙酮酸羧激酶(PEPCK)、果糖-1,6-二磷酸酶和葡萄糖-6-磷酸酶。然而,这些酶并非存在于所有细胞类型中。因此,糖异生仅能在特定组织中发生。在人类中,糖异生主要发生在肝脏,在较小程度上也发生在肾皮质。本文讨论糖异生及其临床相关性。