School of Engineering, Institute for Digital Communications, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
Computer Science, Technische Universität München, Munich, Germany; GE Global Research, Munich, Germany.
Magn Reson Imaging. 2019 Sep;61:20-32. doi: 10.1016/j.mri.2019.04.014. Epub 2019 May 10.
To develop an accelerated Cartesian MRF implementation using a multi-shot EPI sequence for rapid simultaneous quantification of T1 and T2 parameters.
The proposed Cartesian MRF method involved the acquisition of highly subsampled MR images using a 16-shot EPI readout. A linearly varying flip angle train was used for rapid, simultaneous T1 and T2 quantification. The results were compared to a conventional spiral MRF implementation. The acquisition time per slice was 8s and this method was validated on two different phantoms and three healthy volunteer brains in vivo.
Joint T1 and T2 estimations using the 16-shot EPI readout are in good agreement with the spiral implementation using the same acquisition parameters (<4% deviation for T1 and <6% deviation for T2). The T1 and T2 values also agree with the conventional values previously reported in the literature. The visual qualities of fine brain structures in the multi-parametric maps generated by multi-shot EPI-MRF and Spiral-MRF implementations were comparable.
The multi-shot EPI-MRF method generated accurate quantitative multi-parametric maps similar to conventional Spiral-MRF. This multi-shot approach achieved considerable k-space subsampling and comparatively short TRs in a similar manner to spirals and therefore provides an alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.
开发一种使用多-shot EPI 序列的加速笛卡尔 MRF 实现方法,用于快速同时定量 T1 和 T2 参数。
所提出的笛卡尔 MRF 方法涉及使用 16-shot EPI 读出获取高度欠采样的 MR 图像。使用线性变化的翻转角序列进行快速、同时的 T1 和 T2 定量。将结果与传统的螺旋 MRF 实现进行比较。每个切片的采集时间为 8s,该方法在两个不同的体模和三个健康志愿者的大脑中进行了验证。
使用 16-shot EPI 读出进行的联合 T1 和 T2 估计与使用相同采集参数的螺旋实现非常吻合(T1 的偏差<4%,T2 的偏差<6%)。T1 和 T2 值也与文献中先前报道的常规值一致。多参数图中精细脑结构的视觉质量在多 shot EPI-MRF 和螺旋 MRF 实现生成的多参数图中相当。
多 shot EPI-MRF 方法生成的定量多参数图与传统的螺旋 MRF 相似,具有准确性。这种多 shot 方法以类似于螺旋的方式实现了相当大的 k 空间欠采样和相对较短的 TR,因此为使用加速笛卡尔读出执行 MRF 提供了一种替代方法;从而提高了 MRF 的潜在可用性。