Suppr超能文献

纤维的扭曲平衡纤维素水悬浮液中的凝胶-溶胶转变

Twisting of Fibers Balancing the Gel⁻Sol Transition in Cellulose Aqueous Suspensions.

作者信息

Zlenko Dmitry V, Nikolsky Sergey N, Vedenkin Alexander S, Politenkova Galina G, Skoblin Aleksey A, Melnikov Valery P, Michaleva Marya M, Stovbun Sergey V

机构信息

Faculty of Biology, M.V. Lomonosov Moscow State University, Lenin Hills 1/12, 119192 Moscow, Russia.

N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.

出版信息

Polymers (Basel). 2019 May 13;11(5):873. doi: 10.3390/polym11050873.

Abstract

Cellulose hydrogels and films are advantageous materials that are applied in modern industry and medicine. Cellulose hydrogels have a stable scaffold and never form films upon drying, while viscous cellulose hydrosols are liquids that could be used for film production. So, stabilizing either a gel or sol state in cellulose suspensions is a worthwhile challenge, significant for the practical applications. However, there is no theory describing the cellulose fibers' behavior and processes underlying cellulose-gel-scaffold stabilizing. In this work, we provide a phenomenological mechanism explaining the transition between the stable-gel and shapeless-sol states in a cellulose suspension. We suppose that cellulose macromolecules and nanofibrils under strong dispersing treatment (such as sonication) partially untwist and dissociate, and then reassemble in a 3D scaffold having the individual elements twisted in the nodes. The latter leads to an exponential increase in friction forces between the fibers and to the corresponding fastening of the scaffold. We confirm our theory by the data on the circular dichroism of the cellulose suspensions, as well as by the direct scanning electron microscope (SEM) observations and theoretical assessments.

摘要

纤维素水凝胶和薄膜是应用于现代工业和医学的优势材料。纤维素水凝胶具有稳定的支架结构,干燥时不会形成薄膜,而粘性纤维素水溶胶是可用于薄膜生产的液体。因此,在纤维素悬浮液中稳定凝胶或溶胶状态是一项值得挑战的任务,对实际应用具有重要意义。然而,目前尚无理论描述纤维素纤维的行为以及纤维素凝胶支架稳定化背后的过程。在这项工作中,我们提供了一种现象学机制,解释了纤维素悬浮液中稳定凝胶态和无定形溶胶态之间的转变。我们假设,在强分散处理(如超声处理)下,纤维素大分子和纳米纤维会部分解捻和解离,然后重新组装成一个三维支架,其单个元素在节点处发生扭曲。后者导致纤维间摩擦力呈指数增加,并使支架相应地固定。我们通过纤维素悬浮液的圆二色性数据、直接扫描电子显微镜(SEM)观察结果以及理论评估来证实我们的理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f671/6571874/c647558ce8a1/polymers-11-00873-g001.jpg

相似文献

1
Twisting of Fibers Balancing the Gel⁻Sol Transition in Cellulose Aqueous Suspensions.
Polymers (Basel). 2019 May 13;11(5):873. doi: 10.3390/polym11050873.
2
The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films.
Ultrason Sonochem. 2016 Jul;31:473-80. doi: 10.1016/j.ultsonch.2016.01.028. Epub 2016 Jan 27.
3
Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.
Carbohydr Polym. 2015 Mar 30;119:62-70. doi: 10.1016/j.carbpol.2014.11.033. Epub 2014 Nov 24.
4
Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals.
Biomacromolecules. 2015 Aug 10;16(8):2455-62. doi: 10.1021/acs.biomac.5b00701. Epub 2015 Jul 8.
5
A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
Adv Colloid Interface Sci. 2020 Jan;275:102076. doi: 10.1016/j.cis.2019.102076. Epub 2019 Nov 19.
6
Cellulose gel dispersion: From pure hydrogel suspensions to encapsulated oil-in-water emulsions.
Colloids Surf B Biointerfaces. 2016 Jan 1;137:70-6. doi: 10.1016/j.colsurfb.2015.05.039. Epub 2015 May 27.
7
Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids.
Carbohydr Polym. 2020 Jun 1;237:116109. doi: 10.1016/j.carbpol.2020.116109. Epub 2020 Mar 4.
8
Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline.
J Nanosci Nanotechnol. 2009 May;9(5):2917-22. doi: 10.1166/jnn.2009.dk24.
9
Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films.
Carbohydr Polym. 2014 Feb 15;102:431-7. doi: 10.1016/j.carbpol.2013.11.051. Epub 2013 Dec 5.
10
Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
Carbohydr Polym. 2018 Feb 1;181:1136-1142. doi: 10.1016/j.carbpol.2017.11.020. Epub 2017 Dec 2.

引用本文的文献

1
Zhurkov's Stress-Driven Fracture as a Driving Force of the Microcrystalline Cellulose Formation.
Polymers (Basel). 2020 Dec 10;12(12):2952. doi: 10.3390/polym12122952.

本文引用的文献

1
The fibrils untwisting limits the rate of cellulose nitration process.
Carbohydr Polym. 2019 Jan 15;204:232-237. doi: 10.1016/j.carbpol.2018.10.019. Epub 2018 Oct 10.
2
Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers.
ACS Nano. 2018 Jul 24;12(7):6378-6388. doi: 10.1021/acsnano.8b01084. Epub 2018 May 9.
3
Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112). doi: 10.1098/rsta.2017.0038.
4
Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation.
ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13508-13519. doi: 10.1021/acsami.7b01738. Epub 2017 Apr 10.
5
Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures.
Nat Nanotechnol. 2017 May;12(5):474-480. doi: 10.1038/nnano.2017.4. Epub 2017 Feb 27.
6
Mind the Microgap in Iridescent Cellulose Nanocrystal Films.
Adv Mater. 2017 Jan;29(2). doi: 10.1002/adma.201603560. Epub 2016 Nov 9.
7
Cellulose Nanocrystal Microcapsules as Tunable Cages for Nano- and Microparticles.
ACS Nano. 2015 Nov 24;9(11):10887-95. doi: 10.1021/acsnano.5b03905. Epub 2015 Oct 8.
9
Digital color in cellulose nanocrystal films.
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12302-6. doi: 10.1021/am501995e. Epub 2014 Jul 28.
10
Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
J Phys Chem A. 2013 Mar 28;117(12):2580-9. doi: 10.1021/jp3089929. Epub 2013 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验