Suppr超能文献

作为镍(111)表面分子太阳能热存储系统的2,3-二溴取代降冰片二烯/四环烷的表面化学

Surface chemistry of 2,3-dibromosubstituted norbornadiene/quadricyclane as molecular solar thermal energy storage system on Ni(111).

作者信息

Bauer U, Fromm L, Weiß C, Späth F, Bachmann P, Düll F, Steinhauer J, Matysik S, Pominov A, Görling A, Hirsch A, Steinrück H-P, Papp C

机构信息

Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

出版信息

J Chem Phys. 2019 May 14;150(18):184706. doi: 10.1063/1.5095583.

Abstract

Dwindling fossil fuels force humanity to search for new energy production routes. Besides energy generation, its storage is a crucial aspect. One promising approach is to store energy from the sun chemically in strained organic molecules, so-called molecular solar thermal (MOST) systems, which can release the stored energy catalytically. A prototypical MOST system is norbornadiene/quadricyclane (NBD/QC) whose energy release and surface chemistry need to be understood. Besides important key parameters such as molecular weight, endergonic reaction profiles, and sufficient quantum yields, the position of the absorption onset of NBD is crucial to cover preferably a large range of sunlight's spectrum. For this purpose, one typically derivatizes NBD with electron-donating and/or electron-accepting substituents. To keep the model system simple enough to be investigated with photoemission techniques, we introduced bromine atoms at the 2,3-position of both compounds. We study the adsorption behavior, energy release, and surface chemistry on Ni(111) using high-resolution X-ray photoelectron spectroscopy (HR-XPS), UV photoelectron spectroscopy, and density functional theory calculations. Both Br-NBD and Br-QC partially dissociate on the surface at ∼120 K, with Br-QC being more stable. Several stable adsorption geometries for intact and dissociated species were calculated, and the most stable structures are determined for both molecules. By temperature-programmed HR-XPS, we were able to observe the conversion of Br-QC to Br-NBD in situ at 170 K. The decomposition of Br-NBD starts at 190 K when C-Br bond cleavage occurs and benzene and methylidene are formed. For Br-QC, the cleavage already occurs at 130 K when cycloreversion to Br-NBD sets in.

摘要

日益减少的化石燃料迫使人类寻找新的能源生产途径。除了能源生产,其存储也是一个关键方面。一种有前景的方法是将太阳能以化学方式存储在张力有机分子中,即所谓的分子太阳能热(MOST)系统,该系统可以催化释放存储的能量。一个典型的MOST系统是降冰片二烯/四环烷(NBD/QC),其能量释放和表面化学性质需要被了解。除了诸如分子量、吸能反应曲线和足够的量子产率等重要关键参数外,NBD吸收起始位置对于最好覆盖大范围的太阳光谱至关重要。为此,人们通常用供电子和/或吸电子取代基对NBD进行衍生化。为了使模型系统足够简单以便用光电子能谱技术进行研究,我们在两种化合物的2,3位引入了溴原子。我们使用高分辨率X射线光电子能谱(HR-XPS)、紫外光电子能谱和密度泛函理论计算研究了在Ni(111)上的吸附行为、能量释放和表面化学性质。Br-NBD和Br-QC在约120 K时都在表面部分解离,其中Br-QC更稳定。计算了完整和解离物种的几种稳定吸附几何结构,并确定了两种分子最稳定的结构。通过程序升温HR-XPS,我们能够在170 K原位观察到Br-QC向Br-NBD的转化。当C-Br键断裂并形成苯和亚甲基时,Br-NBD的分解在190 K开始。对于Br-QC,当环反转生成Br-NBD时,裂解在130 K就已经发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验