IEEE Trans Cybern. 2020 Jun;50(6):2758-2769. doi: 10.1109/TCYB.2019.2913200. Epub 2019 May 16.
This paper studies the fixed-time anti-synchronization (FTAS) of discontinuous reaction-diffusion neural networks (DRDNNs) with both time-varying coefficients and time delay. First, differential inclusion theory is used to deal with the influence caused by discontinuous activations. In addition, a new fixed-time convergence theorem is used to handle the time-varying coefficients. Second, a novel state-feedback control algorithm and integral state-feedback control algorithm are proposed to realize FTAS of DRDNNs. During the generalized (adaptive) pinning control strategy, a guideline is proposed to select neurons to pin the designed controller. Furthermore, we present several criteria on FTAS by using the generalized Lyapunov function method. Different from the traditional Lyapunov function with negative definite derivative, the derivative of the Lyapunov function can be positive in this paper. Finally, we give two numerical simulations to substantiate the merits of the obtained results.
本文研究了时变系数和时滞的不连续反应扩散神经网络(DRDNNs)的固定时间反同步(FTAS)。首先,使用微分包含理论来处理不连续激活引起的影响。此外,采用新的固定时间收敛定理来处理时变系数。其次,提出了一种新的状态反馈控制算法和积分状态反馈控制算法,以实现 DRDNNs 的 FTAS。在广义(自适应)钉扎控制策略中,提出了一种指导方针来选择神经元来固定设计的控制器。此外,我们使用广义 Lyapunov 函数方法提出了几个关于 FTAS 的判据。与传统具有负定导数的 Lyapunov 函数不同,本文中 Lyapunov 函数的导数可以为正。最后,给出了两个数值模拟来验证所得到结果的优点。