Suppr超能文献

从分子催化到电催化水氧化中的多相电极跨越桥梁。

Crossing the bridge from molecular catalysis to a heterogenous electrode in electrocatalytic water oxidation.

机构信息

College of Chemistry and Environment Engineering, Shenzhen University, 518000 Shenzhen, China.

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

出版信息

Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11153-11158. doi: 10.1073/pnas.1902455116. Epub 2019 May 16.

Abstract

Significant progress has been made in designing single-site molecular Ru(II)-polypyridyl-aqua catalysts for homogenous catalytic water oxidation. Surface binding and transfer of the catalytic reactivity onto conductive substrates provides a basis for heterogeneous applications in electrolytic cells and dye-sensitized photoelectrosynthesis cells (DSPECs). Earlier efforts have focused on phosphonic acid (-POH) or carboxylic acid (-COH) bindings on oxide surfaces. However, issues remain with limited surface stabilities, especially in aqueous solutions at higher pH under conditions that favor water oxidation by reducing the thermodynamic barrier and accelerating the catalytic rate using atom-proton transfer (APT) pathways. Here, we address the problem by combining silane surface functionalization and surface reductive electropolymerization on mesoporous, nanofilms of indium tin oxide (ITO) on fluorine-doped tin oxide (FTO) substrates (FTO|ITO). FTO|ITO electrodes were functionalized with vinyltrimethoxysilane (VTMS) to introduce vinyl groups on the electrode surfaces by silane attachment, followed by surface electropolymerization of the vinyl-derivatized complex, [Ru(Mebimpy)(dvbpy)(OH)] (1; Mebimpy: 2,6-bis(1-methyl-1-benzo[]imidazol-2-yl)pyridine; dvbpy: 5,5'-divinyl-2,2'-bipyridine), in a mechanism dominated by a grafting-through method. The surface coverage of catalyst 1 was controlled by the number of electropolymerization cycles. The combined silane attachment/cross-linked polymer network stabilized 1 on the electrode surface under a variety of conditions especially at pH > ∼6. Surface-grafted poly1 was stable toward redox cycling at pH ∼ 7.5 over an ∼4-h period. Sustained heterogeneous electrocatalytic water oxidation by the electrode gave steady-state currents for at least ∼6 h with a Faradaic efficiency of ∼68% for O production.

摘要

在设计用于均相催化水氧化的单站点分子 Ru(II)-多吡啶-水合催化剂方面已经取得了显著进展。将催化反应的表面结合和转移到导电基底上为在电解槽和染料敏化光电合成电池 (DSPEC) 中的多相应用提供了基础。早期的努力集中在氧化物表面上的膦酸(-POH)或羧酸(-COOH)结合上。然而,在有利于通过降低热力学障碍和使用质子转移 (APT) 途径加速催化速率来氧化水的条件下,在较高 pH 的水溶液中,其表面稳定性仍然存在问题。在这里,我们通过在掺氟氧化锡 (FTO) 基底上的介孔纳米薄膜铟锡氧化物 (ITO) 上进行硅烷表面功能化和表面还原电化学聚合来解决该问题。FTO|ITO 电极用乙烯基三甲氧基硅烷 (VTMS) 进行功能化,通过硅烷附着在电极表面上引入乙烯基基团,然后通过 [Ru(Mebimpy)(dvbpy)(OH)](1;Mebimpy:2,6-双(1-甲基-1-苯并咪唑-2-基)吡啶;dvbpy:5,5'-二乙烯基-2,2'-联吡啶)的乙烯基衍生复合物的表面电聚合,在以接枝贯穿方法为主导的机制中进行。催化剂 1 的表面覆盖率由电聚合循环的数量控制。在各种条件下,特别是在 pH > ∼6 时,硅烷附着/交联聚合物网络共同稳定了 1 在电极表面上。在 pH ∼ 7.5 下,表面接枝的 poly1 在大约 4 小时的时间内稳定,进行氧化还原循环。通过电极进行的持续的非均相电催化水氧化产生了至少约 6 小时的稳态电流,对于 O 生产的法拉第效率约为 68%。

相似文献

1
Crossing the bridge from molecular catalysis to a heterogenous electrode in electrocatalytic water oxidation.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11153-11158. doi: 10.1073/pnas.1902455116. Epub 2019 May 16.
3
Plasma-Initiated Graft Polymerization of Acrylic Acid onto Fluorine-Doped Tin Oxide as a Platform for Immobilization of Water-Oxidation Catalysts.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14077-14090. doi: 10.1021/acsami.0c19730. Epub 2021 Mar 22.
4
A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation.
J Am Chem Soc. 2018 Nov 7;140(44):15062-15069. doi: 10.1021/jacs.8b10132. Epub 2018 Oct 29.
5
Analysis of Homogeneous Water Oxidation Catalysis with Collector-Generator Cells.
Inorg Chem. 2016 Jan 19;55(2):512-7. doi: 10.1021/acs.inorgchem.5b02182. Epub 2015 Nov 12.
6
Making oxygen with ruthenium complexes.
Acc Chem Res. 2009 Dec 21;42(12):1954-65. doi: 10.1021/ar9001526.
7
Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):5899-902. doi: 10.1073/pnas.1506111112. Epub 2015 Apr 27.
8
Stable Molecular Surface Modification of Nanostructured, Mesoporous Metal Oxide Photoanodes by Silane and Click Chemistry.
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4560-4567. doi: 10.1021/acsami.8b17824. Epub 2019 Jan 16.
9
Selective electrocatalytic oxidation of a re-methyl complex to methanol by a surface-bound Ru(II) polypyridyl catalyst.
J Am Chem Soc. 2014 Nov 12;136(45):15845-8. doi: 10.1021/ja507979c. Epub 2014 Oct 29.
10
Catalytic water oxidation on derivatized nanoITO.
Dalton Trans. 2010 Aug 14;39(30):6950-2. doi: 10.1039/c0dt00362j. Epub 2010 Jun 22.

本文引用的文献

2
Stable Molecular Surface Modification of Nanostructured, Mesoporous Metal Oxide Photoanodes by Silane and Click Chemistry.
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4560-4567. doi: 10.1021/acsami.8b17824. Epub 2019 Jan 16.
3
A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation.
J Am Chem Soc. 2018 Nov 7;140(44):15062-15069. doi: 10.1021/jacs.8b10132. Epub 2018 Oct 29.
5
Fundamental Factors Impacting the Stability of Phosphonate-Derivatized Ruthenium Polypyridyl Sensitizers Adsorbed on Metal Oxide Surfaces.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22821-22833. doi: 10.1021/acsami.8b04587. Epub 2018 Jun 21.
6
Mechanisms of molecular water oxidation in solution and on oxide surfaces.
Chem Soc Rev. 2017 Oct 16;46(20):6148-6169. doi: 10.1039/c7cs00465f.
7
Frontiers of water oxidation: the quest for true catalysts.
Chem Soc Rev. 2017 Oct 16;46(20):6124-6147. doi: 10.1039/c7cs00306d.
8
How to make an efficient and robust molecular catalyst for water oxidation.
Chem Soc Rev. 2017 Oct 16;46(20):6088-6098. doi: 10.1039/c7cs00248c.
9
Rapid water oxidation electrocatalysis by a ruthenium complex of the tripodal ligand tris(2-pyridyl)phosphine oxide.
Chem Sci. 2015 Apr 16;6(4):2405-2410. doi: 10.1039/c5sc00032g. Epub 2015 Feb 4.
10
Fluoropolymer-Stabilized Chromophore-Catalyst Assemblies in Aqueous Buffer Solutions for Water-Oxidation Catalysis.
ChemSusChem. 2017 Jun 9;10(11):2380-2384. doi: 10.1002/cssc.201700630. Epub 2017 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验