College of Chemistry and Environment Engineering, Shenzhen University, 518000 Shenzhen, China.
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11153-11158. doi: 10.1073/pnas.1902455116. Epub 2019 May 16.
Significant progress has been made in designing single-site molecular Ru(II)-polypyridyl-aqua catalysts for homogenous catalytic water oxidation. Surface binding and transfer of the catalytic reactivity onto conductive substrates provides a basis for heterogeneous applications in electrolytic cells and dye-sensitized photoelectrosynthesis cells (DSPECs). Earlier efforts have focused on phosphonic acid (-POH) or carboxylic acid (-COH) bindings on oxide surfaces. However, issues remain with limited surface stabilities, especially in aqueous solutions at higher pH under conditions that favor water oxidation by reducing the thermodynamic barrier and accelerating the catalytic rate using atom-proton transfer (APT) pathways. Here, we address the problem by combining silane surface functionalization and surface reductive electropolymerization on mesoporous, nanofilms of indium tin oxide (ITO) on fluorine-doped tin oxide (FTO) substrates (FTO|ITO). FTO|ITO electrodes were functionalized with vinyltrimethoxysilane (VTMS) to introduce vinyl groups on the electrode surfaces by silane attachment, followed by surface electropolymerization of the vinyl-derivatized complex, [Ru(Mebimpy)(dvbpy)(OH)] (1; Mebimpy: 2,6-bis(1-methyl-1-benzo[]imidazol-2-yl)pyridine; dvbpy: 5,5'-divinyl-2,2'-bipyridine), in a mechanism dominated by a grafting-through method. The surface coverage of catalyst 1 was controlled by the number of electropolymerization cycles. The combined silane attachment/cross-linked polymer network stabilized 1 on the electrode surface under a variety of conditions especially at pH > ∼6. Surface-grafted poly1 was stable toward redox cycling at pH ∼ 7.5 over an ∼4-h period. Sustained heterogeneous electrocatalytic water oxidation by the electrode gave steady-state currents for at least ∼6 h with a Faradaic efficiency of ∼68% for O production.
在设计用于均相催化水氧化的单站点分子 Ru(II)-多吡啶-水合催化剂方面已经取得了显著进展。将催化反应的表面结合和转移到导电基底上为在电解槽和染料敏化光电合成电池 (DSPEC) 中的多相应用提供了基础。早期的努力集中在氧化物表面上的膦酸(-POH)或羧酸(-COOH)结合上。然而,在有利于通过降低热力学障碍和使用质子转移 (APT) 途径加速催化速率来氧化水的条件下,在较高 pH 的水溶液中,其表面稳定性仍然存在问题。在这里,我们通过在掺氟氧化锡 (FTO) 基底上的介孔纳米薄膜铟锡氧化物 (ITO) 上进行硅烷表面功能化和表面还原电化学聚合来解决该问题。FTO|ITO 电极用乙烯基三甲氧基硅烷 (VTMS) 进行功能化,通过硅烷附着在电极表面上引入乙烯基基团,然后通过 [Ru(Mebimpy)(dvbpy)(OH)](1;Mebimpy:2,6-双(1-甲基-1-苯并咪唑-2-基)吡啶;dvbpy:5,5'-二乙烯基-2,2'-联吡啶)的乙烯基衍生复合物的表面电聚合,在以接枝贯穿方法为主导的机制中进行。催化剂 1 的表面覆盖率由电聚合循环的数量控制。在各种条件下,特别是在 pH > ∼6 时,硅烷附着/交联聚合物网络共同稳定了 1 在电极表面上。在 pH ∼ 7.5 下,表面接枝的 poly1 在大约 4 小时的时间内稳定,进行氧化还原循环。通过电极进行的持续的非均相电催化水氧化产生了至少约 6 小时的稳态电流,对于 O 生产的法拉第效率约为 68%。