Suppr超能文献

枯草芽孢杆菌、大肠杆菌和腐败希瓦氏菌与恶臭假单胞菌协同作用对抑制氧气腐蚀的低碳钢的影响。

Synergistic action of Bacillus subtilis, Escherichia coli and Shewanella putrefaciens along with Pseudomonas putida on inhibiting mild steel against oxygen corrosion.

机构信息

Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.

Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.

出版信息

Appl Microbiol Biotechnol. 2019 Jul;103(14):5891-5905. doi: 10.1007/s00253-019-09866-0. Epub 2019 May 19.

Abstract

Microbial biofilm can effectively alter the electrochemical characteristics at metal/solution interface that can either accelerate or decelerate corrosion. The present paper reports about microbiologically induced corrosion inhibition (MICI) using Pseudomonas putida as a dominant bacterium under aerobic condition. Effective corrosion inhibition is achieved by the synergistic metabolic action of P. putida along with Escherichia coli, Bacillus subtilis or Shewanella putrefaciens. The synergistic metabolic actions of these bacteria in biopassivation are analysed with various aspects such as electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM). Surface topography is quantitatively analysed using optical scanning profilometry (OSP). The binary culture system containing P. putida + E. coli and P. putida + S. putrefaciens achieves an inhibition efficiency of 90% and 85% respectively, despite S. putrefaciens being a corrosion causing bacteria. The P. putida + E. coli system could form a stable biofilm on mild steel surface, with a high corrosion potential (- 329 mV vs. Ag/AgCl/KCl sat'd) and a low corrosion rate (1.65 × 10 mmpy). The presence of B. subtilis in the culture promotes corrosion against normal predictions. In the present case, the metabolic activities of the bacterial system on the mild steel surface cause depletion of oxygen in the medium that leads to suppression of corrosion. In addition, the biofilm could form an effective protective barrier on the metal surface that can suppress diffusion of corrosion products resulting in enhanced corrosion inhibition efficiency.

摘要

微生物生物膜可以有效地改变金属/溶液界面的电化学特性,从而加速或减缓腐蚀。本文报道了在有氧条件下使用铜绿假单胞菌作为优势菌进行微生物诱导腐蚀抑制(MICI)的情况。铜绿假单胞菌与大肠杆菌、枯草芽孢杆菌或腐败希瓦氏菌的协同代谢作用可实现有效的腐蚀抑制。通过电化学阻抗谱(EIS)、傅里叶变换红外光谱(FT-IR)、场发射扫描电子显微镜(FESEM)和共聚焦激光扫描显微镜(CLSM)等多种方面分析了这些细菌在生物钝化中的协同代谢作用。使用光学扫描轮廓仪(OSP)对表面形貌进行定量分析。含有铜绿假单胞菌+大肠杆菌和铜绿假单胞菌+腐败希瓦氏菌的二元培养系统分别实现了 90%和 85%的抑制效率,尽管腐败希瓦氏菌是一种腐蚀性细菌。铜绿假单胞菌+大肠杆菌系统可以在低碳钢表面形成稳定的生物膜,具有高腐蚀电位(-329 mV 相对于 Ag/AgCl/KCl sat'd)和低腐蚀速率(1.65×10-3 mmpy)。培养物中存在枯草芽孢杆菌会促进腐蚀,这与正常预测相反。在这种情况下,细菌系统在低碳钢表面的代谢活动会导致培养基中氧气耗尽,从而抑制腐蚀。此外,生物膜可以在金属表面形成有效的保护屏障,抑制腐蚀产物的扩散,从而提高腐蚀抑制效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验