Suppr超能文献

响尾蛇的红外对比度增强和运动检测的神经元基质。

Neuronal Substrates for Infrared Contrast Enhancement and Motion Detection in Rattlesnakes.

机构信息

Chair of Zoology, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354 Freising-Weihenstephan, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152 Planegg, Germany.

Chair of Zoology, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354 Freising-Weihenstephan, Germany.

出版信息

Curr Biol. 2019 Jun 3;29(11):1827-1832.e4. doi: 10.1016/j.cub.2019.04.035. Epub 2019 May 16.

Abstract

Pit vipers detect infrared (IR) radiation with loreal pit organs [1] that are connected to the hindbrain by trigeminal nerve fibers [2-4]. The pattern of central afferent termination forms a topographical representation of the sensory periphery within the nucleus of the lateral descending trigeminal tract (LTTD) [4-7]. All LTTD neurons project to another specialized, ipsilateral hindbrain area, the nucleus reticularis caloris (RC) [8-11], before IR signals are integrated with visual signals in the optic tectum [12, 13]. Pit-organ-innervating afferent fibers provoke in individual LTTD neurons a direct, robust spike activity upon peripheral activation [7, 14]. This discharge is truncated by an indirect, delayed synaptic inhibition from afferent fibers of adjacent sensory areas through parallel microcircuitry that converges with afferent fibers onto the same target neurons [7]. Here, we determined the impact of this interaction on IR contrast enhancement and/or motion detection in LTTD and RC neurons using isolated whole-brain preparations of rattlesnakes with intact pit organs. Simulated and real IR source motion provoked weak directional tuning of the discharge in LTTD neurons and RC neurons expressed a strong, motion-direction-differentiating activity. The hierarchically increasing motion sensitivity potentially derives from a direction-specific inhibition or spike frequency adaptation of LTTD neuronal discharge that becomes further pronounced by convergent projections onto individual RC neurons. The emerging signaling pattern complies with contrast enhancement (LTTD) and extraction of movement-related signals (RC), thereby forming a motion detection mechanism that encodes moving IR sources relative to the ambient temperature [14].

摘要

颊窝蝮蛇通过连接三叉神经纤维的额窝器官[1]检测红外(IR)辐射[2-4]。中枢传入终止的模式在外侧降三叉神经核(LTTD)内形成感觉外围的拓扑表示[4-7]。所有 LTTD 神经元都投射到另一个专门的同侧后脑区域,即网状核(RC)[8-11],然后在视顶盖中将 IR 信号与视觉信号整合[12,13]。在单独的 LTTD 神经元中,额窝传入纤维刺激引起直接、强烈的尖峰活动,外周激活[7,14]。这种放电通过来自相邻感觉区域的传入纤维的间接、延迟的突触抑制而截断,通过平行微电路与传入纤维汇聚到相同的靶神经元[7]。在这里,我们使用具有完整额窝的响尾蛇分离全脑制剂,确定了这种相互作用对 LTTD 和 RC 神经元的 IR 对比度增强和/或运动检测的影响。模拟和真实的 IR 源运动引起 LTTD 神经元放电的微弱方向调谐,RC 神经元表达强烈的、运动方向区分的活动。分层增加的运动敏感性可能源自 LTTD 神经元放电的方向特异性抑制或尖峰频率适应,这种抑制或适应通过对单个 RC 神经元的会聚投射而变得更加明显。出现的信号模式符合对比度增强(LTTD)和运动相关信号提取(RC),从而形成一种运动检测机制,用于相对于环境温度编码移动的 IR 源[14]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验