Suppr超能文献

电子医院数据库中感染传播的随机建模与推断:2007 - 2010年牛津郡医院的传播情况

Stochastic modelling and inference in electronic hospital databases for the spread of infections: transmission in Oxfordshire hospitals 2007-2010.

作者信息

Cule Madeleine, Donnelly Peter

机构信息

Department of Statistics, 1 South Parks Road, Oxford OX1 3TG.

Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN.

出版信息

Ann Appl Stat. 2017;11(2):655-679. doi: 10.1214/16-aoas1011.

Abstract

The combination of genetic information with electronic patient records promises to provide a powerful new resource for understanding human disease and its treatment. Here we develop and apply a novel stochastic compartmental model to a large dataset on infection (CDI) in three Oxfordshire hospitals over a 2.5 year period which combines genetic information on 858 confirmed cases of CDI with a database of 750,000 patient records. is a major cause of healthcare-associated diarrhoea and is responsible for substantial mortality and morbidity, with relatively little known about its biology or its transmission epidemiology. Bayesian analysis of our model, via Markov chain Monte Carlo, provides new information about the biology of CDI, including genetic heterogeneity in infectiousness across different sequence types, and evidence for ward contamination as a significant mode of transmission, and allows inferences about the contribution of particular individuals, wards, or hospitals to transmission of the bacterium, and assessment of changes in these over time following changes in hospital practice. Our work demonstrates the value of using statistical modelling and computational inference on large-scale hospital patient databases and genetic data.

摘要

将遗传信息与电子病历相结合,有望为理解人类疾病及其治疗提供一种强大的新资源。在此,我们开发了一种新颖的随机 compartmental 模型,并将其应用于牛津郡三家医院2.5年期间关于艰难梭菌感染(CDI)的大型数据集,该数据集将858例确诊CDI病例的遗传信息与一个包含750,000份患者记录的数据库相结合。艰难梭菌感染是医疗保健相关腹泻的主要原因,会导致大量的死亡率和发病率,而对其生物学特性或传播流行病学了解相对较少。通过马尔可夫链蒙特卡罗方法对我们的模型进行贝叶斯分析,提供了关于艰难梭菌感染生物学的新信息,包括不同序列类型之间传染性的遗传异质性,以及病房污染作为一种重要传播方式的证据,并允许推断特定个体、病房或医院对该细菌传播的贡献,以及评估医院实践变化后这些因素随时间的变化。我们的工作证明了对大规模医院患者数据库和遗传数据使用统计建模和计算推理的价值。

相似文献

4
Epidemiology of Infection in a Large Hospital in Northern Italy: Questioning the Ward-Based Transmission.
Open Microbiol J. 2017 Dec 29;11:360-371. doi: 10.2174/1874285801711010360. eCollection 2017.
5
Spatio-temporal stochastic modelling of Clostridium difficile.
J Hosp Infect. 2009 Jan;71(1):49-56. doi: 10.1016/j.jhin.2008.09.013. Epub 2008 Nov 17.
6
Epidemiological model for Clostridium difficile transmission in healthcare settings.
Infect Control Hosp Epidemiol. 2011 Jun;32(6):553-61. doi: 10.1086/660013.
8
Healthcare-Associated Clostridium difficile Infections are Sustained by Disease from the Community.
Bull Math Biol. 2017 Oct;79(10):2242-2257. doi: 10.1007/s11538-017-0328-8. Epub 2017 Aug 3.

本文引用的文献

3
Host and pathogen factors for Clostridium difficile infection and colonization.
N Engl J Med. 2011 Nov 3;365(18):1693-703. doi: 10.1056/NEJMoa1012413.
4
Epidemiological model for Clostridium difficile transmission in healthcare settings.
Infect Control Hosp Epidemiol. 2011 Jun;32(6):553-61. doi: 10.1086/660013.
5
An efficient record linkage scheme using graphical analysis for identifier error detection.
BMC Med Inform Decis Mak. 2011 Feb 1;11:7. doi: 10.1186/1472-6947-11-7.
6
The potential for airborne dispersal of Clostridium difficile from symptomatic patients.
Clin Infect Dis. 2010 Jun 1;50(11):1450-7. doi: 10.1086/652648.
7
Preventing transmission of Clostridium difficile: is the answer blowing in the wind?
Clin Infect Dis. 2010 Jun 1;50(11):1458-61. doi: 10.1086/652649.
8
A review of mortality due to Clostridium difficile infection.
J Infect. 2010 Jul;61(1):1-8. doi: 10.1016/j.jinf.2010.03.025. Epub 2010 Mar 31.
10
Multilocus sequence typing of Clostridium difficile.
J Clin Microbiol. 2010 Mar;48(3):770-8. doi: 10.1128/JCM.01796-09. Epub 2009 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验