Zhang Mukun, Zhang Heng, Hong Haiou, Zhang Zhiyong
Health Management Center, The First Affiliated Hospital of USTC, Anhui Provincial Hospital Hefei, Anhui, China.
Department of Histology and Embryology, Xiang Ya School of Medicine, Central South University Changsha, Hunan, China.
Am J Cancer Res. 2019 Apr 1;9(4):765-778. eCollection 2019.
Despite impressively initial clinical responses, the majority of hepatocellular carcinoma (HCC) patients treated with sorafenib eventually develop resistance to this drug. It is well-known that microRNA (miRNA) plays a critical role in HCC progression and sorafenib resistance. However, the potential mechanism by which miRNA contributes to the human HCC cells to sorafenib resistance is still unknown. Herein, we identify miR-374b/hnRNPA1/PKM2 axis serving as an important mechanism for acquired sorafenib resistance of HCC cells. By establishing a sorafenib-resistant HCC model, we demonstrated that miR-374b reduces the expression of hnRNPA1 by binding to its 3' untranslated region, which subsequently decreases levels of PKM2. The suppression of PKM2 by miR-374b re-sensitizes sorafenib-resistant HCC cells and mouse xenografts to sorafenib treatment by antagonizing glycolysis pathway. Clinically, hnRNPA1 and PKM2 expression are upregulated and inversely associated with miR-374b expression level in sorafenib-resistant HCC patients. Moreover, sorafenib significantly induces the expression of hnRNPA1, which serves as an important mechanism for the acquired sorafenib resistance in HCCs. Thus, our data suggest that targeting the alternative splicing of the PKM by miR-374b overexpression may have significant implications in overcoming the resistance to sorafenib therapy.
尽管索拉非尼治疗的肝细胞癌(HCC)患者最初有令人印象深刻的临床反应,但大多数患者最终会对该药物产生耐药性。众所周知,微小RNA(miRNA)在HCC进展和索拉非尼耐药中起关键作用。然而,miRNA导致人类HCC细胞对索拉非尼耐药的潜在机制仍不清楚。在此,我们确定miR-374b/异质性核糖核蛋白A1(hnRNPA1)/丙酮酸激酶M2(PKM2)轴是HCC细胞获得性索拉非尼耐药的重要机制。通过建立索拉非尼耐药的HCC模型,我们证明miR-374b通过与其3'非翻译区结合降低hnRNPA1的表达,随后降低PKM2的水平。miR-374b对PKM2的抑制通过拮抗糖酵解途径使索拉非尼耐药的HCC细胞和小鼠异种移植瘤对索拉非尼治疗重新敏感。临床上,在索拉非尼耐药的HCC患者中,hnRNPA1和PKM2表达上调,且与miR-374b表达水平呈负相关。此外,索拉非尼显著诱导hnRNPA1的表达,这是HCC获得性索拉非尼耐药的重要机制。因此,我们的数据表明,通过过表达miR-374b靶向PKM的可变剪接可能对克服索拉非尼治疗耐药性具有重要意义。