Hüger Erwin, Stahn Jochen, Heitjans Paul, Schmidt Harald
AG Mikrokinetik, Institut für Metallurgie, TU Clausthal, D-38678 Clausthal-Zellerfeld, Germany.
Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland.
Phys Chem Chem Phys. 2019 Aug 14;21(30):16444-16450. doi: 10.1039/c9cp01222b. Epub 2019 May 23.
Li ion transport through thin (14-22 nm) amorphous silicon layers adjacent to lithium metal oxide layers (lithium niobate) was studied by in situ neutron reflectometry experiments and the control mechanism was determined. It was found that the interface between amorphous silicon and the oxide material does not hinder Li transport. It is restricted by Li diffusion in the silicon material. This finding based on in situ experiments confirms results obtained ex situ and destructively by secondary ion mass spectrometry (SIMS) depth profiling investigations. The Li permeabilities obtained from the present experiments are in agreement with those obtained from ex situ SIMS measurements showing similar activation enthalpies.
通过原位中子反射测量实验研究了锂离子在与锂金属氧化物层(铌酸锂)相邻的薄(14 - 22纳米)非晶硅层中的传输,并确定了控制机制。发现非晶硅与氧化物材料之间的界面不会阻碍锂的传输。它受锂在硅材料中的扩散限制。基于原位实验的这一发现证实了通过二次离子质谱(SIMS)深度剖析研究非原位和破坏性获得的结果。从本实验获得的锂渗透率与从非原位SIMS测量获得的渗透率一致,显示出相似的活化焓。