Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany.
Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany.
J Mol Biol. 2019 Jul 12;431(15):2718-2728. doi: 10.1016/j.jmb.2019.05.021. Epub 2019 May 21.
Allosteric communication between different subunits in metabolic enzyme complexes is of utmost physiological importance but only understood for few systems. We analyzed the structural basis of allostery in aminodeoxychorismate synthase (ADCS), which is a member of the family of glutamine amidotransferases and catalyzes the committed step of the folate biosynthetic pathway. ADCS consists of the synthase subunit PabB and the glutaminase subunit PabA, which is allosterically stimulated by the presence of the PabB substrate chorismate. We first solved the crystal structure of a PabA subunit at 1.9-Å resolution. Based on this structure and the known structure of PabB, we computed an atomic model for the ADCS complex. We then used alanine scanning to test the functional role of 59 conserved residues located between the active sites of PabB and PabA. Steady-state kinetic characterization revealed four branches of a conserved network of mainly charged residues that propagate the signal from chorismate at the PabB active site to the PabA active site. The branches eventually lead to activity-inducing transformations at (i) the oxyanion hole motif, (ii) the catalytic Cys-His-Glu triad, and (iii) glutamine binding residues at the PabA active site. We compare our findings with previously postulated activation mechanisms of different glutamine amidotransferases and propose a unifying regulation mechanism for this ubiquitous family of enzymes.
别构沟通在代谢酶复合物的不同亚基之间具有至关重要的生理意义,但仅在少数系统中得到理解。我们分析了氨基脱氧胆酸合酶(ADCS)别构的结构基础,ADCS 是谷氨酰胺酰胺转移酶家族的成员,催化叶酸生物合成途径的关键步骤。ADCS 由合成酶亚基 PabB 和谷氨酸酶亚基 PabA 组成,PabA 亚基被 PabB 底物邻氨基苯甲酰谷氨酸(chorismate)别构激活。我们首先以 1.9-Å 的分辨率解决了 PabA 亚基的晶体结构。基于该结构和已知的 PabB 结构,我们计算了 ADCS 复合物的原子模型。然后,我们使用丙氨酸扫描测试了位于 PabB 和 PabA 活性中心之间的 59 个保守残基的功能作用。稳态动力学特征揭示了一个保守的主要带电荷残基网络的四个分支,该网络将信号从 PabB 活性中心的邻氨基苯甲酰谷氨酸传递到 PabA 活性中心。这些分支最终导致在(i)氧阴离子孔模体、(ii)催化 Cys-His-Glu 三肽和(iii)PabA 活性中心的谷氨酰胺结合残基处发生诱导活性的转变。我们将我们的发现与先前提出的不同谷氨酰胺酰胺转移酶的激活机制进行了比较,并为这个普遍存在的酶家族提出了一个统一的调节机制。