College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, China.
Physiol Plant. 2020 Mar;168(3):736-754. doi: 10.1111/ppl.12997. Epub 2019 Jun 25.
Researchers have shown that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) act as competitive endogenous RNAs (ceRNAs) and are mutually regulated by competition for binding to common microRNA response elements (MREs). However, a comprehensive identification and analysis of lncRNAs and circRNAs as ceRNAs have not yet been completed in cucumber (Cucumis sativus L.) exposed to high-temperature stress. In our study, 32 663 coding transcripts, 2085 lncRNAs, 2477 circRNAs and 348 differentially expressed miRNAs were identified using RNA sequencing. In addition, six heat-stress-responsive miRNAs (five known and one novel miRNAs) and eight lncRNAs were selected for qPCR to confirm their expression profiles. By analyzing the cis effects of lncRNAs, we constructed a lncRNA-mRNA co-expression network. Based on the results, the corresponding lncRNAs play a regulatory role in the stress response in cucumber plants. In our study, the PatMatch software was used to predict the potential function of lncRNAs and circRNAs as ceRNAs. A total of 18 lncRNAs and seven circRNAs were predicted to bind to 114 differentially expressed miRNAs and compete with 359 mRNAs for miRNA binding sites. These mRNAs are predicted to be involved in various pathways, such as plant hormone signal transduction, plant-pathogen interaction and glutathione metabolism. Among them, TCONS_00031790, TCONS_00014332, TCONS_00014717, TCONS_00005674, novel_circ_001543 and novel_circ_000876 may interact with miR9748 by plant hormone signal transduction pathways in response to high-temperature stress. Moreover, indole-3-acetic acid (IAA) and 1-aminocyclopropane-l-carboxylic acid (ACC) levels decreased in the high-temperature treatment group, indicating that IAA and ethylene signaling might be involved in response to high-temperature stress. In this study, we conducted a full transcriptomic analysis in response to high-temperature stress in cucumber and, for the first time, integrated the potential ceRNA functions of lncRNAs/circRNAs. The results provide a basis for studying the potential functions of lncRNAs/circRNAs in response to high-temperature stress.
研究人员表明,长链非编码 RNA(lncRNA)和环状 RNA(circRNA)作为竞争性内源性 RNA(ceRNA),通过竞争结合共同的 microRNA 反应元件(MRE)进行相互调控。然而,在黄瓜(Cucumis sativus L.)暴露于高温胁迫下,lncRNA 和 circRNA 作为 ceRNA 的全面鉴定和分析尚未完成。在本研究中,使用 RNA 测序鉴定了 32663 个编码转录本、2085 个 lncRNA、2477 个 circRNA 和 348 个差异表达的 miRNA。此外,选择了六个热应激响应 miRNA(五个已知和一个新的 miRNA)和八个 lncRNA 进行 qPCR 以验证其表达谱。通过分析 lncRNA 的顺式作用,构建了 lncRNA-mRNA 共表达网络。基于这些结果,相应的 lncRNA 在黄瓜植物的应激反应中发挥调节作用。在本研究中,使用 PatMatch 软件预测 lncRNA 和 circRNA 作为 ceRNA 的潜在功能。共预测了 18 个 lncRNA 和 7 个 circRNA 与 114 个差异表达的 miRNA 结合,并与 359 个 mRNA 竞争 miRNA 结合位点。这些 mRNA 预测涉及各种途径,如植物激素信号转导、植物-病原体相互作用和谷胱甘肽代谢。其中,TCONS_00031790、TCONS_00014332、TCONS_00014717、TCONS_00005674、novel_circ_001543 和 novel_circ_000876 可能通过植物激素信号转导途径与 miR9748 相互作用,以响应高温胁迫。此外,高温处理组中吲哚-3-乙酸(IAA)和 1-氨基环丙烷-1-羧酸(ACC)水平降低,表明 IAA 和乙烯信号可能参与响应高温胁迫。在本研究中,我们对黄瓜响应高温胁迫进行了全转录组分析,并首次整合了 lncRNA/circRNA 的潜在 ceRNA 功能。研究结果为研究 lncRNA/circRNA 对高温胁迫的潜在功能提供了依据。