Laboratório Interdisciplinar de Neuroengenharia e Neurociências (LINNce), Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei - Praça Frei, Orlando, 170 - Centro, São João Del-Rei, MG, CEP 36307-352, Brazil.
Laboratório Interdisciplinar de Neuroengenharia e Neurociências (LINNce), Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei - Praça Frei, Orlando, 170 - Centro, São João Del-Rei, MG, CEP 36307-352, Brazil; Instituto do Cérebro, Universidade Federal do Rio Grande do Norte - Av. Nascimento de Castro, 2155 - Morro Branco, Natal, RN, CEP 59056-450, Brazil.
Epilepsy Res. 2019 Aug;154:107-115. doi: 10.1016/j.eplepsyres.2019.05.009. Epub 2019 May 8.
Electrical stimulation (ES) of the nervous system is a promising alternative for the treatment of refractory epilepsy. Based on the understanding that seizures are the expression of neural hypersynchronism, our group developed and tested a non-standard form of low-energy temporally unstructured ES termed NPS (Non-periodic stimulation), with pseudo-randomized inter-pulse intervals. Previous investigation demonstrated that NPS applied to the amygdala has a robust anticonvulsant effect against both acute and chronic seizures, and suggested that its therapeutic effect is based on direct desynchronization of ictogenic neural circuits. Further mechanistic investigation using functional magnetic resonance imaging has shown that NPS also activates nucleus accumbens (NAc) in seizure-free rats, raising the hypothesis of an alternative therapeutic mechanism: NPS-enhanced indirect inhibition / desynchronization of ictogenic circuits by NAc. In order to investigate this idea, here we evaluated behavior and cortical electrographic activity from animals submitted to pentylenetetrazole (PTZ) induced seizures, treated with NPS and with or without bilateral electrolytic lesion of NAc. NPS-treated animals with bilateral lesion of NAc expressed unexpected straub tail in addition to other stereotypical convulsive behavior, displayed increased susceptibility to PTZ (lower drug threshold), and had a much longer electrographic seizure, with a greater number of spikes, firing at a higher rate. Moreover, analysis of spike morphology showed an increase in amplitude and slope in these animals, suggesting that ablation of NAc results in disinhibition and/or increase of neural synchronism within ictogenic circuits. NPS had no therapeutic effect whatsoever in lesioned animals, while it displayed a mild anticonvulsant effect in those with intact brains. Results corroborate the notion that NAc has a key role in controlling aberrant epileptiform activity in ictogenic circuits through indirect polysynaptic connections that may enroll the ventral pallidum and ventral tegmental area. They also point to the possibility that NPS may enhance this effect, putatively by benefiting from the structure's property of detecting saliences.
电刺激(ES)神经系统是治疗难治性癫痫的一种很有前途的替代方法。基于发作是神经超同步化的表现的理解,我们小组开发并测试了一种非标准形式的低能量、非周期性、无规则脉冲间隔的 ES,称为 NPS(非周期性刺激)。先前的研究表明,NPS 施加于杏仁核具有强大的抗惊厥作用,可对抗急性和慢性发作,并且表明其治疗效果基于致痫性神经回路的直接去同步化。使用功能磁共振成像进行的进一步机制研究表明,NPS 还会激活未发作癫痫的大鼠的伏隔核(NAc),提出了另一种治疗机制的假设:NPS 通过 NAc 增强致痫回路的间接抑制/去同步化。为了研究这个想法,我们在这里评估了接受戊四氮(PTZ)诱导的癫痫发作的动物的行为和皮质电图活动,这些动物接受了 NPS 治疗,以及是否接受了双侧 NAc 电解损伤治疗。双侧 NAc 损伤的 NPS 治疗动物除了其他刻板的惊厥行为外,还表现出意外的 straub 尾巴,对 PTZ 的敏感性增加(较低的药物阈值),并且脑电图发作时间更长,尖峰数量更多,发射频率更高。此外,尖峰形态分析表明,这些动物的振幅和斜率增加,提示 NAc 消融导致致痫回路中的去抑制和/或神经同步增加。NPS 在损伤动物中没有任何治疗作用,而在未损伤大脑的动物中则表现出轻度的抗惊厥作用。结果证实了 NAc 通过间接多突触连接在控制致痫回路中的异常癫痫样活动方面具有关键作用的观点,这些连接可能涉及腹侧苍白球和腹侧被盖区。它们还指出了 NPS 可能通过受益于该结构检测显着性的特性来增强这种效果的可能性。