Suppr超能文献

贝叶斯正则化分位数回归的新 Gibbs 抽样方法。

New Gibbs sampling methods for bayesian regularized quantile regression.

机构信息

Department of Statistics, College of Administration and Economics, University of Al-Qadisiyah, Iraq.

Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq.

出版信息

Comput Biol Med. 2019 Jul;110:52-65. doi: 10.1016/j.compbiomed.2019.05.011. Epub 2019 May 16.

Abstract

In this paper, we propose new Bayesian hierarchical representations of lasso, adaptive lasso and elastic net quantile regression models. We explore these representations by observing that the lasso penalty function corresponds to a scale mixture of truncated normal distribution (with exponential mixing densities). We consider fully Bayesian treatments that lead to new Gibbs sampler methods with tractable full conditional posteriors. The new methods are then illustrated with both simulated and real data. Results show that the new methods perform very well under a variety of simulations, such as the presence of a moderately large number of predictors, collinearity and heterogeneity.

摘要

在本文中,我们提出了套索、自适应套索和弹性网分位数回归模型的新贝叶斯层次表示。我们通过观察到套索惩罚函数对应于截断正态分布的比例混合(具有指数混合密度)来探索这些表示。我们考虑了完全贝叶斯处理方法,这些方法导致了新的 Gibbs 抽样方法,具有可处理的完全条件后验。然后,使用模拟数据和真实数据来说明新方法。结果表明,在各种模拟情况下,例如存在中等数量的预测变量、共线性和异质性,新方法的性能非常好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验