与脑积水患者脑室周围白质改变相互作用的脑脊髓液流变学必需表面活性剂蛋白——对脑脊髓液动力学和胶状淋巴系统的影响。
Rheologically Essential Surfactant Proteins of the CSF Interacting with Periventricular White Matter Changes in Hydrocephalus Patients - Implications for CSF Dynamics and the Glymphatic System.
机构信息
Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany.
出版信息
Mol Neurobiol. 2019 Nov;56(11):7863-7871. doi: 10.1007/s12035-019-01648-z. Epub 2019 May 24.
Surfactant proteins (SP) are multi-systemic proteins playing crucial roles in the regulation of rheological properties of physiological fluids, host defense, and the clearance of potentially harmful metabolites. Hydrocephalus patients suffer from disturbed central nervous system (CNS) fluid homeostasis and exhibit remarkably altered SP concentrations within the cerebrospinal fluid (CSF). A connection between CSF-SPs, CSF flow, and ventricular dilatation, a morphological hallmark of hydrocephalus, has been reported previously. However, currently there are no studies investigating the link between rheologically active SPs and periventricular white matter changes caused by impaired CSF microcirculation in hydrocephalic conditions. Thus, the aim of this study was to assess their possible relationships. The present study included 47 individuals (27 healthy subjects and 20 hydrocephalus patients). CSF specimens were analyzed for concentrations of SP-A, SP-C, and SP-D by using enzyme-linked immunosorbent assays (ELISAs). Axial T2w turbo inversion recovery magnitude (TIRM) magnetic resonance imaging was employed in all cases. Using a custom-made MATLAB-based tool for quantification of magnetic resonance signal intensities in the brain, parameters related to disturbed deep white matter CSF microcirculation were estimated (TIRM signal intensity (SI)-mean, minimum, maximum, median, mode, standard deviation, and percentiles, p10th, p25th, p75th, p90th, as well as kurtosis, skewness, and entropy of the SI distribution). Subsequently, statistical analysis was performed (IBM SPSS 24™) to identify differences between hydrocephalic patients and healthy individuals and to further investigate the connections between CSF-SP changes and deep white matter signal intensities. SP-A (0.38 ± 0.23 vs. 0.76 ± 0.49 ng/ml) and SP-C (0.54 ± 0.28 vs. 1.27 ± 1.09 ng/ml) differed between healthy controls and hydrocephalus patients in a statistically significant manner. Also, corresponding quantification of white matter signal intensities revealed statistically significant differences between hydrocephalus patients and healthy individuals: SImean (370.41 ± 188.15 vs. 222.27 ± 99.86, p = 0.001), SImax (1115.30 ± 700.12 vs. 617.00 ± 459.34, p = 0.005), SImedian (321.40 ± 153.17 vs. 209.52 ± 84.86, p = 0.001), SImode (276.55 ± 125.63 vs. 197.26 ± 78.51, p = 0.011), SIstd (157.09 ± 110.07 vs. 81.71 ± 64.94, p = 0.005), SIp10 (229.10 ± 104.22 vs. 140.00 ± 63.12, p = 0.001), SIp25 (266.95 ± 122.62 vs. 175.63 ± 71.42, p = 0.002), SIp75 (428.80 ± 226.88 vs. 252.19 ± 110.91, p = 0.001), SIp90 (596.47 ± 345.61 vs. 322.06 ± 176.00, p = 0.001), skewness (1.19 ± 0.68 vs. 0.43 ± 1.19, p = 0.014), and entropy (5.36 ± 0.37 vs. 4.92 ± 0.51, p = 0.002). There were no differences regarding SP-D levels in hydrocephalus patients vs. healthy controls. In the acute hydrocephalic subgroup, correlations were as follows: SP-A showed a statistically significant correlation with SImax (r = 0.670, p = 0.024), SIstd (r = 0.697, p = 0.017), SIp90 (r = 0.621, p = 0.041), and inverse correlation with entropy (r = - 0.700, p = 0.016). SP-C correlated inversely with entropy (r = - 0.686, p = 0.020). For the chronic hydrocephalus subgroup, the following correlations were identified: SP-A correlated with kurtosis of the TIRM histogram (r = - 0.746, p = 0.021). SP-C correlated with SImean (r = - 0.688, p = 0.041), SImax (r = - 0.741, p = 0.022), SImedian (r = - 0.716, p = 0.030), SImode (r = - 0.765, p = 0.016), SIstd (r = - 0.671, p = 0.048), SIp25 (r = - 0.740, p = 0.023), SIp75 (r = - 0.672, p = 0.048), and SIp90 (r = - 0.667, p = 0.050). SP-D apparently does not play a major role in CSF fluid physiology. SP-A and SP-C are involved in different aspects of CNS fluid physiology. SP-A appears to play an essential compensatory role in acute hydrocephalus and seems less involved in chronic hydrocephalus. In contrary, SP-C profile and white matter changes are remarkably connected in CSF of chronic hydrocephalus patients. Considering the association between CSF flow phenomena, white matter changes, and SP-C profiles, the latter may especially contribute to the regulation of paravascular glymphatic physiology.
表面活性剂蛋白(SP)是具有多种系统功能的蛋白,在调节生理流体的流变特性、宿主防御和清除潜在有害代谢物方面发挥着关键作用。脑积水患者的中枢神经系统(CNS)液流稳态受到干扰,并在脑脊液(CSF)中表现出明显改变的 SP 浓度。先前已有报道称 CSF-SP、CSF 流动和脑室扩张之间存在关联,脑室扩张是脑积水的形态学标志。然而,目前尚无研究探讨在脑积水情况下因 CSF 微循环受损而导致的具有流变活性的 SP 与脑室周围白质变化之间的联系。因此,本研究的目的是评估它们之间的可能联系。本研究纳入了 47 名个体(27 名健康受试者和 20 名脑积水患者)。采用酶联免疫吸附测定法(ELISA)检测 SP-A、SP-C 和 SP-D 的 CSF 浓度。对所有病例均采用轴向 T2w 涡轮反转恢复幅度(TIRM)磁共振成像。使用用于量化大脑中磁共振信号强度的定制 MATLAB 工具,评估与 CSF 微循环紊乱的深部白质相关的参数(TIRM 信号强度(SI)-均值、最小值、最大值、中位数、众数、标准差和百分位数,第 10 百分位数、第 25 百分位数、第 75 百分位数、第 90 百分位数,以及 SI 分布的峰度、偏度和熵)。随后,采用 IBM SPSS 24™ 进行统计分析,以确定脑积水患者与健康个体之间的差异,并进一步探讨 CSF-SP 变化与深部白质信号强度之间的联系。SP-A(0.38±0.23 vs. 0.76±0.49 ng/ml)和 SP-C(0.54±0.28 vs. 1.27±1.09 ng/ml)在统计学上存在显著差异。相应的白质信号强度定量分析也显示了脑积水患者与健康个体之间的统计学差异:SImean(370.41±188.15 vs. 222.27±99.86,p=0.001)、SImax(1115.30±700.12 vs. 617.00±459.34,p=0.005)、SImedian(321.40±153.17 vs. 209.52±84.86,p=0.001)、SImode(276.55±125.63 vs. 197.26±78.51,p=0.011)、SIstd(157.09±110.07 vs. 81.71±64.94,p=0.005)、SIp10(229.10±104.22 vs. 140.00±63.12,p=0.001)、SIp25(266.95±122.62 vs. 175.63±71.42,p=0.002)、SIp75(428.80±226.88 vs. 252.19±110.91,p=0.001)、SIp90(596.47±345.61 vs. 322.06±176.00,p=0.001)、偏度(1.19±0.68 vs. 0.43±1.19,p=0.014)和熵(5.36±0.37 vs. 4.92±0.51,p=0.002)。在脑积水患者与健康对照组之间,SP-D 水平无差异。在急性脑积水亚组中,相关性如下:SP-A 与 SImax(r=0.670,p=0.024)、SIstd(r=0.697,p=0.017)、SIp90(r=0.621,p=0.041)呈统计学显著相关,与熵呈负相关(r=-0.700,p=0.016)。SP-C 与熵呈负相关(r=-0.686,p=0.020)。在慢性脑积水亚组中,确定了以下相关性:SP-A 与 TIRM 直方图的峰度呈负相关(r=-0.746,p=0.021)。SP-C 与 SImean(r=-0.688,p=0.041)、SImax(r=-0.741,p=0.022)、SImedian(r=-0.716,p=0.030)、SImode(r=-0.765,p=0.016)、SIstd(r=-0.671,p=0.048)、SIp25(r=-0.740,p=0.023)、SIp75(r=-0.672,p=0.048)和 SIp90(r=-0.667,p=0.050)呈负相关。SP-D 似乎在 CSF 流体生理学中不起主要作用。SP-A 和 SP-C 参与了中枢神经系统液流生理学的不同方面。SP-A 似乎在急性脑积水患者中发挥着重要的代偿作用,而在慢性脑积水患者中则较少参与。相反,SP-C 图谱和白质变化在慢性脑积水患者的 CSF 中明显相关。考虑到 CSF 流动现象、白质变化和 SP-C 图谱之间的关联,后者可能特别有助于旁血管神经胶质生理学的调节。