Suppr超能文献

一种用于评估股骨近端皮质骨厚度的新型磁共振成像工具。

A Novel MRI Tool for Evaluating Cortical Bone Thickness of the Proximal Femur.

作者信息

Ramme Austin J, Vira Shaleen, Hotca Alexandra, Miller Rhiannon, Welbeck Arakua, Honig Stephen, Egol Kenneth A, Rajapakse Chamith S, Chang Gregory

出版信息

Bull Hosp Jt Dis (2013). 2019 Mar;77(2):115-121.

Abstract

BACKGROUND

Osteoporotic hip fractures heavily cost the health care system. Clinicians and patients can benefit from improved tools to assess bone health. Herein, we aim to develop a three-dimensional magnetic resonance imaging (MRI) method to assess cortical bone thickness and assess the ability of the method to detect regional changes in the proximal femur.

METHODS

Eighty-nine patients underwent hip magnetic resonance imaging. FireVoxel and 3DSlicer were used to generate three-dimensional proximal femur models. ParaView was used to define five regions: head, neck, greater trochanter, intertrochanteric region, and subtrochanteric region. Custom software was used to calculate the cortical bone thickness and generate a color map of the proximal femur. Mean cortical thickness values for each region were calculated. Statistical t-tests were performed to evaluate differences in cortical thickness based on proximal femur region. Measurement reliability was evaluated using coefficient of variation, intraclass correlation coefficients, and overlap metrics.

RESULTS

Three-dimensional regional cortical thickness maps for all subjects were generated. The subtrochanteric region was found to have the thickest cortical bone and the femoral head had the thinnest cortical bone. There were statistically significant differences between regions (p < 0.01) for all possible comparisons.

CONCLUSIONS

Cortical bone is an important contributor to bone strength, and its thinning results in increased hip fracture risk. We describe the development and measurement reproducibility of an MRI tool permitting assessment of proximal femur cortical thickness. This study represents an important step toward longitudinal clinical trials interested in monitoring the effectiveness of drug therapy on proximal femur cortical thickness.

摘要

背景

骨质疏松性髋部骨折给医疗保健系统带来沉重负担。临床医生和患者可以从改进的骨健康评估工具中受益。在此,我们旨在开发一种三维磁共振成像(MRI)方法来评估皮质骨厚度,并评估该方法检测股骨近端区域变化的能力。

方法

89例患者接受了髋部磁共振成像检查。使用FireVoxel和3DSlicer生成三维股骨近端模型。使用ParaView定义五个区域:股骨头、股骨颈、大转子、转子间区域和转子下区域。使用定制软件计算皮质骨厚度并生成股骨近端的彩色地图。计算每个区域的平均皮质厚度值。进行统计t检验以评估基于股骨近端区域的皮质厚度差异。使用变异系数、组内相关系数和重叠指标评估测量可靠性。

结果

生成了所有受试者的三维区域皮质厚度图。发现转子下区域的皮质骨最厚,股骨头的皮质骨最薄。所有可能比较的区域之间均存在统计学显著差异(p < 0.01)。

结论

皮质骨是骨强度的重要贡献者,其变薄会导致髋部骨折风险增加。我们描述了一种MRI工具的开发及其测量可重复性,该工具可用于评估股骨近端皮质厚度。这项研究朝着对监测药物治疗对股骨近端皮质厚度有效性感兴趣的纵向临床试验迈出了重要一步。

相似文献

3
Cortical bone structure of the proximal femur and incident fractures.
Bone. 2022 Feb;155:116284. doi: 10.1016/j.bone.2021.116284. Epub 2021 Dec 4.
4
Hip fractures in the elderly: The role of cortical bone.
Injury. 2016 Oct;47 Suppl 4:S107-S111. doi: 10.1016/j.injury.2016.07.058. Epub 2016 Aug 21.
5
QCT of the proximal femur--which parameters should be measured to discriminate hip fracture?
Osteoporos Int. 2016 Mar;27(3):1137-1147. doi: 10.1007/s00198-015-3324-6. Epub 2015 Sep 28.
6
Proximal Femur Hounsfield Units on CT Colonoscopy Correlate With Dual-energy X-ray Absorptiometry.
Clin Orthop Relat Res. 2019 Apr;477(4):850-860. doi: 10.1097/CORR.0000000000000480.
10
Analysis of the evolution of cortical and trabecular bone compartments in the proximal femur after spinal cord injury by 3D-DXA.
Osteoporos Int. 2018 Jan;29(1):201-209. doi: 10.1007/s00198-017-4268-9. Epub 2017 Oct 17.

引用本文的文献

1
Monte Carlo-based in-depth morphological analysis of medullary cavity for designing personalized femoral stem.
Front Surg. 2024 Aug 9;11:1294749. doi: 10.3389/fsurg.2024.1294749. eCollection 2024.
2
A Virtual, 3D Multimodal Approach to Victim and Crime Scene Reconstruction.
Diagnostics (Basel). 2023 Aug 25;13(17):2764. doi: 10.3390/diagnostics13172764.
4
Can magnetic resonance imaging accurately and reliably measure humeral cortical thickness?
JSES Int. 2021 Dec 11;6(2):297-304. doi: 10.1016/j.jseint.2021.10.010. eCollection 2022 Mar.

本文引用的文献

1
Full circle: 3D femoral mapping demonstrates age-related changes that influence femoral implant positioning.
Injury. 2016 Feb;47(2):471-7. doi: 10.1016/j.injury.2015.11.005. Epub 2015 Nov 26.
2
Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.
Eur Radiol. 2016 Jul;26(7):2047-54. doi: 10.1007/s00330-015-4048-x. Epub 2015 Oct 7.
4
Biomechanical assessment of a patient-specific knee implant design using finite element method.
Biomed Res Int. 2014;2014:353690. doi: 10.1155/2014/353690. Epub 2014 Jun 30.
8
Cortical bone assessed with clinical computed tomography at the proximal femur.
J Bone Miner Res. 2014 Apr;29(4):771-83. doi: 10.1002/jbmr.2199.
9
Noninvasive imaging of bone microarchitecture.
Ann N Y Acad Sci. 2011 Dec;1240:77-87. doi: 10.1111/j.1749-6632.2011.06282.x.
10
Volume measurement of bone erosions in magnetic resonance images of patients with rheumatoid arthritis.
Magn Reson Med. 2012 Mar;67(3):814-23. doi: 10.1002/mrm.23037. Epub 2011 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验