文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EGFR 通过 HIPK2 的过表达驱动 AKI 向 CKD 的进展。

EGFR drives the progression of AKI to CKD through HIPK2 overexpression.

机构信息

Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.

Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China.

出版信息

Theranostics. 2019 Apr 13;9(9):2712-2726. doi: 10.7150/thno.31424. eCollection 2019.


DOI:10.7150/thno.31424
PMID:31131063
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6526000/
Abstract

The molecular mechanism underlying the transition of acute kidney injury (AKI) to chronic kidney disease (CKD) induced by vancomycin (VAN) remains largely unknown. : The mice model of VAN drives AKI to CKD was developed to investigate the role and molecular mechanism of epidermal growth factor receptor (EGFR). The EGF receptor mutant (Wa-2) mice and gefitinib were used to inactivation of EGFR. The homeodomain interacting protein kinase 2 (HIPK2) siRNA was applied to silence of HIPK2. Human proximal tubular epithelial cells (HK-2) were used to explore the molecular regulation methanism of EGFR. ChIp analysis was used to investigate if STAT3 interaction with the promoter of HIPK2. A novel VAN-induced AKI mouse model was established for the first time. Moreover, the expression levels collagen I&IV, α-SMA, p-EGFR and the expression of HIPK2 proteins were upregulated in this model. Interestingly, AKI caused by VAN was markedly attenuated in waved-2 mice at the early stage, as evidenced by the suppression of renal dysfunction, renal cell apoptosis and caspase3 activation. In the latter stage, renal fibrosis and inflammation were significantly ameliorated in Wa-2 mice, accompanied by the downregulation of profibrotic molecules and F4/80. Besides, the expression levels of HIPK2 and p-STAT3 were suppressed in Wa-2 mice during VAN-induced transition of AKI to CKD. In addition, renal fibrosis and inflammation, profibrotic molecules, and EGFR/STAT3/HIPK2 signaling were ameliorated by gefitinib treatment after VAN-induced AKI. These results were consistent with the findings of Wa-2 mice. EGFR/STAT3 signaling mediated VAN-induced HIPK2 expression in HK-2 cells. ChIp analysis revealed that STAT3 directly bound to the promoter region of HIPK2. Finally, inhibition of HIPK2 attenuated the VAN drove the progression of AKI to CKD. : These data suggest that EGFR plays an important role in VAN-driven progression of AKI to CKD.

摘要

万古霉素(VAN)诱导的急性肾损伤(AKI)向慢性肾脏病(CKD)转变的潜在分子机制在很大程度上尚不清楚。本研究旨在建立万古霉素诱导 AKI 向 CKD 转变的小鼠模型,探讨表皮生长因子受体(EGFR)的作用和分子机制。使用表皮生长因子受体突变(Wa-2)小鼠和吉非替尼来抑制 EGFR 的活性。应用同源结构域相互作用蛋白激酶 2(HIPK2)siRNA 沉默 HIPK2。使用人近端肾小管上皮细胞(HK-2)来探索 EGFR 的分子调控机制。应用 ChIP 分析来研究 STAT3 是否与 HIPK2 启动子相互作用。首次建立了一种新的万古霉素诱导的 AKI 小鼠模型。此外,在该模型中,I&IV 型胶原、α-SMA、磷酸化 EGFR 和 HIPK2 蛋白的表达水平上调。有趣的是,在早期,Wa-2 小鼠中,VAN 诱导的 AKI 明显减弱,表现为肾功能障碍、肾细胞凋亡和 caspase3 激活的抑制。在后期,Wa-2 小鼠的肾纤维化和炎症明显改善,伴随着促纤维化分子和 F4/80 的下调。此外,在 VAN 诱导 AKI 向 CKD 转变过程中,Wa-2 小鼠的 HIPK2 和 p-STAT3 表达水平降低。此外,在 VAN 诱导 AKI 后,吉非替尼治疗可改善肾纤维化和炎症、促纤维化分子、EGFR/STAT3/HIPK2 信号通路。这些结果与 Wa-2 小鼠的发现一致。EGFR/STAT3 信号通路介导 VAN 诱导的 HK-2 细胞中 HIPK2 的表达。ChIP 分析显示,STAT3 直接与 HIPK2 启动子区域结合。最后,抑制 HIPK2 可减轻 VAN 驱动 AKI 向 CKD 进展。这些数据表明,EGFR 在 VAN 诱导的 AKI 向 CKD 进展中起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/f98e84b42b71/thnov09p2712g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/b5b1886b73bf/thnov09p2712g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/9ca59e0afa70/thnov09p2712g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/39c95b2ff454/thnov09p2712g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/888b231e3758/thnov09p2712g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/7d6546809f73/thnov09p2712g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/1f9102b224e2/thnov09p2712g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/e105ef8fe439/thnov09p2712g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/037351befe84/thnov09p2712g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/fe7ea773de28/thnov09p2712g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/f98e84b42b71/thnov09p2712g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/b5b1886b73bf/thnov09p2712g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/9ca59e0afa70/thnov09p2712g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/39c95b2ff454/thnov09p2712g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/888b231e3758/thnov09p2712g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/7d6546809f73/thnov09p2712g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/1f9102b224e2/thnov09p2712g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/e105ef8fe439/thnov09p2712g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/037351befe84/thnov09p2712g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/fe7ea773de28/thnov09p2712g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/6526000/f98e84b42b71/thnov09p2712g010.jpg

相似文献

[1]
EGFR drives the progression of AKI to CKD through HIPK2 overexpression.

Theranostics. 2019-4-13

[2]
MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI.

Cell Death Dis. 2017-10-12

[3]
EGFR activity is required for renal tubular cell dedifferentiation and proliferation in a murine model of folic acid-induced acute kidney injury.

Am J Physiol Renal Physiol. 2012-12-19

[4]
STAT3 blockade ameliorates LPS-induced kidney injury through macrophage-driven inflammation.

Cell Commun Signal. 2024-10-4

[5]
ISG15 accelerates acute kidney injury and the subsequent AKI-to-CKD transition by promoting TGFβR1 ISGylation.

Theranostics. 2024-7-22

[6]
Inhibition of IRE1/JNK pathway in HK-2 cells subjected to hypoxia-reoxygenation attenuates mesangial cells-derived extracellular matrix production.

J Cell Mol Med. 2020-11

[7]
p53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO.

Sci Rep. 2017-2-27

[8]
Blockade of STAT3 signaling alleviates the progression of acute kidney injury to chronic kidney disease through antiapoptosis.

Am J Physiol Renal Physiol. 2022-5-1

[9]
Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease EGFR, p53, and Hippo/YAP/TAZ pathways.

FASEB J. 2019-5-16

[10]
HIPK2 C-terminal domain inhibits NF-κB signaling and renal inflammation in kidney injury.

JCI Insight. 2024-3-21

引用本文的文献

[1]
Inhibition of Mettl3 alleviates low-dose cisplatin-induced renal fibrosis and enhances the chemotherapeutic efficacy in mouse models of cancer.

Int J Biol Sci. 2025-6-23

[2]
Association of soluble urokinase plasminogen activator receptor and epidermal growth factor with histopathological findings of kidney biopsy: a single-center study.

BMC Nephrol. 2025-7-25

[3]
Modulation of TGF-β signaling new approaches toward kidney disease and fibrosis therapy.

Int J Biol Sci. 2025-2-3

[4]
TAX1BP1 regulates the apoptosis of renal tubular epithelial cells in ischemia/reperfusion injury via the NF-kB/PMAIP1 signaling pathway.

Inflamm Res. 2025-1-7

[5]
Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies.

Front Pharmacol. 2024-8-21

[6]
LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates epithelial-mesenchymal transition of peritoneal mesothelial cells and M2 macrophage polarization.

Ren Fail. 2024-12

[7]
miR-664a-5p promotes experimental membranous nephropathy progression through HIPK2/Calpain1/GSα-mediated autophagy inhibition.

J Cell Mol Med. 2024-2

[8]
Intestinal Trefoil Factor 3: a new biological factor mediating gut-kidney crosstalk in diabetic kidney disease.

Endocrine. 2024-4

[9]
Exploring anti-acute kidney injury mechanism of Dahuang-Gancao decoction by network pharmacology and experimental validation.

Aging (Albany NY). 2023-9-18

[10]
Network pharmacology combined with molecular docking and experimental validation to reveal the pharmacological mechanism of naringin against renal fibrosis.

Open Med (Wars). 2023-6-8

本文引用的文献

[1]
Atg7 mediates renal tubular cell apoptosis in vancomycin nephrotoxicity through activation of PKC-δ.

FASEB J. 2018-12-27

[2]
lncRNA ZEB1-AS1 Was Suppressed by p53 for Renal Fibrosis in Diabetic Nephropathy.

Mol Ther Nucleic Acids. 2018-9-7

[3]
Rodent models of AKI-CKD transition.

Am J Physiol Renal Physiol. 2018-6-27

[4]
Genetic or pharmacologic inhibition of EGFR ameliorates sepsis-induced AKI.

Oncotarget. 2017-9-23

[5]
MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI.

Cell Death Dis. 2017-10-12

[6]
AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms.

Kidney Int. 2017-9-8

[7]
Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury.

Kidney Int. 2017-5-3

[8]
Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury.

Kidney Int. 2017-8

[9]
p53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO.

Sci Rep. 2017-2-27

[10]
Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy.

Kidney Int. 2017-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索