Nag Nitish, Pandey Vaibhav, Putzel Preston J, Bhimaraju Hari, Krishnan Srikanth, Jain Ramesh
University of California, Irvine.
University of California, Los Angeles.
Proc ACM Int Conf Multimed. 2018 Oct;2018:1993-2002. doi: 10.1145/3240508.3241913.
Individuals create and consume more diverse data about themselves today than any time in history. Sources of this data include wearable devices, images, social media, geo-spatial information and more. A tremendous opportunity rests within cross-modal data analysis that leverages existing domain knowledge methods to understand and guide human health. Especially in chronic diseases, current medical practice uses a combination of sparse hospital based biological metrics (blood tests, expensive imaging, etc.) to understand the evolving health status of an individual. Future health systems must integrate data created at the individual level to better understand health status perpetually, especially in a cybernetic framework. In this work we fuse multiple user created and open source data streams along with established biomedical domain knowledge to give two types of quantitative state estimates of cardiovascular health. First, we use wearable devices to calculate cardiorespiratory fitness (CRF), a known quantitative leading predictor of heart disease which is not routinely collected in clinical settings. Second, we estimate inherent genetic traits, living environmental risks, circadian rhythm, and biological metrics from a diverse dataset. Our experimental results on 24 subjects demonstrate how multi-modal data can provide personalized health insight. Understanding the dynamic nature of health status will pave the way for better health based recommendation engines, better clinical decision making and positive lifestyle changes.
如今,个人创造和使用的关于自身的数据比历史上任何时候都更加多样。这些数据的来源包括可穿戴设备、图像、社交媒体、地理空间信息等等。跨模态数据分析蕴含着巨大机遇,它利用现有的领域知识方法来理解和指导人类健康。特别是在慢性病方面,当前的医疗实践结合了基于医院的稀疏生物指标(血液检测、昂贵的成像等)来了解个体不断变化的健康状况。未来的医疗系统必须整合个体层面产生的数据,以便更好地持续了解健康状况,尤其是在控制论框架下。在这项工作中,我们融合了多个用户创建的和开源的数据流以及既定的生物医学领域知识,以给出两种心血管健康的定量状态估计。首先,我们使用可穿戴设备来计算心肺适能(CRF),这是一种已知的心脏病定量主要预测指标,在临床环境中通常不会常规收集。其次,我们从一个多样化的数据集中估计内在遗传特征、生活环境风险、昼夜节律和生物指标。我们对24名受试者的实验结果表明了多模态数据如何能够提供个性化的健康见解。理解健康状况的动态本质将为更好的基于健康的推荐引擎、更好的临床决策以及积极的生活方式改变铺平道路。