Suppr超能文献

跨模态健康状态估计

Cross-Modal Health State Estimation.

作者信息

Nag Nitish, Pandey Vaibhav, Putzel Preston J, Bhimaraju Hari, Krishnan Srikanth, Jain Ramesh

机构信息

University of California, Irvine.

University of California, Los Angeles.

出版信息

Proc ACM Int Conf Multimed. 2018 Oct;2018:1993-2002. doi: 10.1145/3240508.3241913.

Abstract

Individuals create and consume more diverse data about themselves today than any time in history. Sources of this data include wearable devices, images, social media, geo-spatial information and more. A tremendous opportunity rests within cross-modal data analysis that leverages existing domain knowledge methods to understand and guide human health. Especially in chronic diseases, current medical practice uses a combination of sparse hospital based biological metrics (blood tests, expensive imaging, etc.) to understand the evolving health status of an individual. Future health systems must integrate data created at the individual level to better understand health status perpetually, especially in a cybernetic framework. In this work we fuse multiple user created and open source data streams along with established biomedical domain knowledge to give two types of quantitative state estimates of cardiovascular health. First, we use wearable devices to calculate cardiorespiratory fitness (CRF), a known quantitative leading predictor of heart disease which is not routinely collected in clinical settings. Second, we estimate inherent genetic traits, living environmental risks, circadian rhythm, and biological metrics from a diverse dataset. Our experimental results on 24 subjects demonstrate how multi-modal data can provide personalized health insight. Understanding the dynamic nature of health status will pave the way for better health based recommendation engines, better clinical decision making and positive lifestyle changes.

摘要

如今,个人创造和使用的关于自身的数据比历史上任何时候都更加多样。这些数据的来源包括可穿戴设备、图像、社交媒体、地理空间信息等等。跨模态数据分析蕴含着巨大机遇,它利用现有的领域知识方法来理解和指导人类健康。特别是在慢性病方面,当前的医疗实践结合了基于医院的稀疏生物指标(血液检测、昂贵的成像等)来了解个体不断变化的健康状况。未来的医疗系统必须整合个体层面产生的数据,以便更好地持续了解健康状况,尤其是在控制论框架下。在这项工作中,我们融合了多个用户创建的和开源的数据流以及既定的生物医学领域知识,以给出两种心血管健康的定量状态估计。首先,我们使用可穿戴设备来计算心肺适能(CRF),这是一种已知的心脏病定量主要预测指标,在临床环境中通常不会常规收集。其次,我们从一个多样化的数据集中估计内在遗传特征、生活环境风险、昼夜节律和生物指标。我们对24名受试者的实验结果表明了多模态数据如何能够提供个性化的健康见解。理解健康状况的动态本质将为更好的基于健康的推荐引擎、更好的临床决策以及积极的生活方式改变铺平道路。

相似文献

1
Cross-Modal Health State Estimation.
Proc ACM Int Conf Multimed. 2018 Oct;2018:1993-2002. doi: 10.1145/3240508.3241913.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Health Multimedia: Lifestyle Recommendations Based on Diverse Observations.
ICMR 17 (2017). 2017 Jun;2017:99-106. doi: 10.1145/3078971.3080545. Epub 2017 Jun 6.
7
8
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
9
A novel attention-based cross-modal transfer learning framework for predicting cardiovascular disease.
Comput Biol Med. 2024 Mar;170:107977. doi: 10.1016/j.compbiomed.2024.107977. Epub 2024 Jan 9.

引用本文的文献

1
Understanding "Atmosome", the Personal Atmospheric Exposome: Comprehensive Approach.
JMIR Biomed Eng. 2021 Nov 23;6(4):e28920. doi: 10.2196/28920.
2
Cognitive Services and Intelligent Chatbots: Current Perspectives and Special Issue Introduction.
IEEE Internet Comput. 2019 Mar-Apr;23(2):6-12. doi: 10.1109/MIC.2018.2889231. Epub 2019 Apr 26.
3
Concurrent heart rate validity of wearable technology devices during trail running.
PLoS One. 2020 Aug 31;15(8):e0238569. doi: 10.1371/journal.pone.0238569. eCollection 2020.
4
A Navigational Approach to Health: Actionable Guidance for Improved Quality of Life.
Computer (Long Beach Calif). 2019 Apr;52(4):12-20. doi: 10.1109/MC.2018.2883280. Epub 2019 May 6.
5
Ubiquitous Event Mining to Enhance Personal Health.
Proc ACM Int Conf Ubiquitous Comput. 2018 Oct;2018:676-679. doi: 10.1145/3267305.3267684.

本文引用的文献

1
Health Multimedia: Lifestyle Recommendations Based on Diverse Observations.
ICMR 17 (2017). 2017 Jun;2017:99-106. doi: 10.1145/3078971.3080545. Epub 2017 Jun 6.
2
Verily and Its Approach to Digital Biomarkers.
Digit Biomark. 2017 Jul 14;1(1):96-99. doi: 10.1159/000476051. eCollection 2017 Sep-Dec.
3
Using Wearable Activity Type Detection to Improve Physical Activity Energy Expenditure Estimation.
Proc ACM Int Conf Ubiquitous Comput. 2010 Sep;2010:311-320. doi: 10.1145/1864349.1864396.
4
Toward achieving precision health.
Sci Transl Med. 2018 Feb 28;10(430). doi: 10.1126/scitranslmed.aao3612.
5
Environmental Noise and the Cardiovascular System.
J Am Coll Cardiol. 2018 Feb 13;71(6):688-697. doi: 10.1016/j.jacc.2017.12.015.
6
Center of Excellence for Mobile Sensor Data-to-Knowledge (MD2K).
IEEE Pervasive Comput. 2017 Apr-Jun;16(2):18-22. doi: 10.1109/MPRV.2017.29. Epub 2017 Apr 3.
8
Sample size considerations for n-of-1 trials.
Stat Methods Med Res. 2019 Feb;28(2):372-383. doi: 10.1177/0962280217726801. Epub 2017 Sep 7.
10
Accuracy of Cycling Power Meters against a Mathematical Model of Treadmill Cycling.
Int J Sports Med. 2017 Jun;38(6):456-461. doi: 10.1055/s-0043-102945. Epub 2017 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验