Institute of Continuum Mechanics, Leibniz Universität, 30167, Hannover, Germany.
Department of Mechanical Engineering, University of Utah, UT, 84112, Salt Lake City, United States.
J Mech Behav Biomed Mater. 2019 Sep;97:254-271. doi: 10.1016/j.jmbbm.2019.04.022. Epub 2019 May 4.
The present experimental-modelling study provides a quantitative interpretation of mechanical data and damage measurements obtained from collagen hybridizing peptide (CHP) techniques on overstretched sheep cerebral arterial tissues. To this aim, a structurally-motivated constitutive model is developed in the framework of continuum damage mechanics. The model includes two internal variables for describing the effects of collagen triple-helical unfolding via interstrand delamination: one governs plastic mechanisms in collagen fibers, leading to a stress softening response of the tissue at the macroscale; the other one describes the loss of fiber structural integrity, leading to tissue final failure. The proposed model is calibrated using the obtained mechanical experimental data, showing excellent fitting capabilities. The predicted evolution of internal variables agree well with independent measurements of molecular-level CHP-based damage data, obtaining an independent a posteriori validation of damage predictions. Moreover, available data on inelastic tissue elongation following supraphysiological loads are successfully reproduced. These outcomes further the hypothesis that the accumulation of interstrand delamination is a primary cause for the evolution of inelastic mechanisms in tissues, and in particular of stress softening up to failure.
本实验模型研究通过对拉伸过度的羊脑动脉组织进行胶原杂交肽 (CHP) 技术获得的力学数据和损伤测量进行定量解释。为此,在连续损伤力学框架内开发了一种基于结构的本构模型。该模型包含两个内部变量,用于描述通过链间分层导致胶原三螺旋展开的影响:一个控制胶原纤维中的塑性机制,导致组织在宏观尺度上的应力软化响应;另一个描述纤维结构完整性的丧失,导致组织最终失效。使用获得的力学实验数据对提出的模型进行了标定,显示出出色的拟合能力。内部变量的预测演变与独立的基于 CHP 的分子水平损伤数据的测量结果吻合良好,对损伤预测进行了独立的事后验证。此外,成功再现了超生理负荷后组织的非弹性伸长的可用数据。这些结果进一步支持了这样的假设,即链间分层的积累是组织中弹性机制演变的主要原因,特别是在应力软化直至失效方面。