Suppr超能文献

一种改进的自适应 MEMetic 差分进化优化算法,用于数据聚类问题。

An improved adaptive memetic differential evolution optimization algorithms for data clustering problems.

机构信息

Data Mining and Optimization Research Group, Center of Artificial Intelligence Technology, Faculty of Information Science and Technology, University Kebangsaan Malaysia, Bangi, Malaysia.

ASAP Research Group, University of Nottingham Malaysia, Malaysia.

出版信息

PLoS One. 2019 May 28;14(5):e0216906. doi: 10.1371/journal.pone.0216906. eCollection 2019.

Abstract

The performance of data clustering algorithms is mainly dependent on their ability to balance between the exploration and exploitation of the search process. Although some data clustering algorithms have achieved reasonable quality solutions for some datasets, their performance across real-life datasets could be improved. This paper proposes an adaptive memetic differential evolution optimisation algorithm (AMADE) for addressing data clustering problems. The memetic algorithm (MA) employs an adaptive differential evolution (DE) mutation strategy, which can offer superior mutation performance across many combinatorial and continuous problem domains. By hybridising an adaptive DE mutation operator with the MA, we propose that it can lead to faster convergence and better balance the exploration and exploitation of the search. We would also expect that the performance of AMADE to be better than MA and DE if executed separately. Our experimental results, based on several real-life benchmark datasets, shows that AMADE outperformed other compared clustering algorithms when compared using statistical analysis. We conclude that the hybridisation of MA and the adaptive DE is a suitable approach for addressing data clustering problems and can improve the balance between global exploration and local exploitation of the optimisation algorithm.

摘要

数据聚类算法的性能主要取决于其在搜索过程中平衡探索和开发的能力。虽然一些数据聚类算法已经为一些数据集实现了合理的高质量解决方案,但它们在实际数据集上的性能仍有待提高。本文提出了一种自适应遗传差分进化优化算法(AMADE)来解决数据聚类问题。遗传算法(MA)采用自适应差分进化(DE)变异策略,在许多组合和连续问题领域都能提供卓越的变异性能。通过将自适应 DE 变异算子与 MA 混合,我们提出它可以导致更快的收敛,并更好地平衡搜索的探索和开发。如果单独执行,我们还期望 AMADE 的性能优于 MA 和 DE。我们基于几个真实的基准数据集的实验结果表明,与其他比较的聚类算法相比,AMADE 在使用统计分析时表现更好。我们的结论是,MA 和自适应 DE 的混合是解决数据聚类问题的一种合适方法,可以改善优化算法的全局探索和局部开发之间的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b373/6538400/e7ab186023c2/pone.0216906.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验