Catalysis and Surface Chemistry, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
Materials and Surface Science, Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven, The Netherlands.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13862-13866. doi: 10.1073/pnas.1902846116. Epub 2019 May 29.
Low coordinated sites on catalytic surfaces often enhance reactivity, but the underlying dynamical processes are poorly understood. Using two independent approaches, we investigate the reactivity of O impinging onto platinum and resolve how step edges on (111) terraces enhance sticking. At low incident energy, the linear dependence on step density, independence of step type, and insensitivity to O's molecular alignment show that trapping into a physisorbed state precedes molecular chemisorption and dissociation. At higher impact energies, direct molecular chemisorption occurs in parallel on steps and terraces. While terraces are insensitive to alignment of the molecule within the (111) plane, steps favor molecules impacting with their internuclear axis parallel to the edge. Stereodynamical filtering thus controls sticking and dissociation of O on Pt with a twofold role of steps.
催化表面上配位不足的位点通常会增强反应性,但其中的动力学过程还不太清楚。我们使用两种独立的方法研究了氧原子撞击铂的反应性,并确定了(111)平台上的台阶如何增强吸附。在低入射能下,线性依赖于台阶密度、与台阶类型无关以及对氧分子取向不敏感表明,在分子化学吸附和离解之前,氧原子会被捕获到物理吸附状态。在更高的冲击能下,直接的分子化学吸附在台阶和平台上同时发生。虽然平台对分子在(111)平面内的取向不敏感,但台阶有利于与边缘平行的核间轴撞击的分子。因此,立体动力学过滤控制着氧在铂上的吸附和离解,台阶起到了双重作用。