采用多元线性和逻辑回归建模的质量源于设计方法可实现微乳的放大。

Quality by Design Approach Using Multiple Linear and Logistic Regression Modeling Enables Microemulsion Scale Up.

机构信息

Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15228, USA.

Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15228, USA.

出版信息

Molecules. 2019 May 30;24(11):2066. doi: 10.3390/molecules24112066.

Abstract

The development of pharmaceutical nanoformulations has accelerated over the past decade. However, the nano-sized drug carriers continue to meet substantial regulatory and clinical translation challenges. In order to address some of these key challenges in early development, we adopted a quality by design approach to develop robust predictive mathematical models for microemulsion formulation, manufacturing, and scale-up. The presented approach combined risk management, design of experiments, multiple linear regression (MLR), and logistic regression to identify a design space in which microemulsion colloidal properties were dependent solely upon microemulsion composition, thus facilitating scale-up operations. Developed MLR models predicted microemulsion diameter, polydispersity index (PDI), and diameter change over 30 days storage, while logistic regression models predicted the probability of a microemulsion passing quality control testing. A stable microemulsion formulation was identified and successfully scaled up tenfold to 1L without impacting droplet diameter, PDI, or stability.

摘要

在过去的十年中,药物纳米制剂的发展迅速。然而,纳米药物载体仍然面临着重大的监管和临床转化挑战。为了解决早期开发中的一些关键挑战,我们采用了质量源于设计的方法,为微乳液制剂、制造和放大开发了强大的预测性数学模型。所提出的方法结合了风险管理、实验设计、多元线性回归(MLR)和逻辑回归,以确定一个设计空间,其中微乳液的胶体性质仅取决于微乳液的组成,从而便于放大操作。开发的 MLR 模型预测了微乳液的直径、多分散指数(PDI)和储存 30 天后的直径变化,而逻辑回归模型预测了微乳液通过质量控制测试的概率。确定了一种稳定的微乳液配方,并成功地放大了十倍至 1L,而不会影响液滴直径、PDI 或稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3707/6600169/1c36a906a488/molecules-24-02066-g001.jpg

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索