Suppr超能文献

一种用于矩阵补全的混合截断正态正则化方法。

A Hybrid Truncated Norm Regularization Method for Matrix Completion.

作者信息

Ye Hailiang, Li Hong, Cao Feilong, Zhang Liming

出版信息

IEEE Trans Image Process. 2019 May 30. doi: 10.1109/TIP.2019.2918733.

Abstract

Matrix completion has been widely used in image processing, in which the popular approach is to formulate this issue as a general low-rank matrix approximation problem. This paper proposes a novel regularization method referred to as truncated Frobenius norm (TFN), and presents a hybrid truncated norm (HTN) model combining the truncated nuclear norm and truncated Frobenius norm for solving matrix completion problems. To address this model, a simple and effective two-step iteration algorithm is designed. Further, an adaptive way to change the penalty parameter is introduced to reduce the computational cost. Also, the convergence of the proposed method is discussed and proved mathematically. The proposed approach could not only effectively improve the recovery performance but also greatly promote the stability of the model. Meanwhile, the use of this new method could eliminate large variations that exist when estimating complex models, and achieve competitive successes in matrix completion. Experimental results on the synthetic data, real-world images as well as recommendation systems, particularly the use of the statistical analysis strategy, verify the effectiveness and superiority of the proposed method, i.e. the proposed method is more stable and effective than other state-of-the-art approaches.

摘要

矩阵补全在图像处理中已被广泛应用,其中流行的方法是将此问题表述为一般的低秩矩阵逼近问题。本文提出了一种称为截断Frobenius范数(TFN)的新型正则化方法,并提出了一种结合截断核范数和截断Frobenius范数的混合截断范数(HTN)模型来解决矩阵补全问题。为了解决这个模型,设计了一种简单有效的两步迭代算法。此外,引入了一种自适应改变惩罚参数的方法以降低计算成本。同时,对所提方法的收敛性进行了讨论并给出了数学证明。所提方法不仅能有效提高恢复性能,还能极大地提升模型的稳定性。此外,使用这种新方法可以消除估计复杂模型时存在的大幅变化,并在矩阵补全方面取得具有竞争力的成果。在合成数据、真实世界图像以及推荐系统上的实验结果,特别是使用统计分析策略,验证了所提方法的有效性和优越性,即所提方法比其他现有方法更稳定、更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验